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We have used s P phases to improve the hypocentral locations of the earthquakes that occurred offshore
southeast of the Kii peninsula in association with the Mw=7.5 mainshock on September 5, 2004. The earthquakes
were more than 100 km from the onshore seismic network and, thus, their focal depths were poorly constrained.
The s P phases were recorded about 7–11 s after the initial P phases, with both phases having almost the same
apparent velocities. The computation of ray-paths revealed that the arrival times of the later s P phases are
sensitive to focal depths. We have recalculated the hypocenters and origin times for 36 events with more than six
s P phase identifications on seismograms recorded at the High Sensitivity Seismograph Network by including s P
phases in a double-difference earthquake location algorithm, which eliminates the errors introduced by crustal
heterogeneity. The relocation results were then compared with those from the Japan Meteorological Agency
based on traditional absolute location techniques.
Key words: The 2004 earthquake offshore of the Kii peninsula, foreshock and aftershock sequences, improved
double-difference earthquake location algorithm using s P phases, Philippine Sea plate.

1. Introduction
Earthquake focal depth is an important parameter for as-

sessing seismic hazard, discriminating natural earthquakes
from nuclear explosions, and understanding the tectonic
process. However, the determination of the focal depth has
been a difficult problem because the arrival time data are
generally observed at stations on the surface of the Earth.
Many methods of locating earthquakes have been devel-
oped to improve the resolution of the focal depth. One such
example is the double-difference earthquake location al-
gorithm which eliminates the substantial errors introduced
by crustal heterogeneity (Waldhauser and Ellsworth, 2000)
and, to a certain extent, produces a more accurate absolute
location of earthquakes than traditional methods (Menke
and Schaff, 2004). The time separations between the direct
arrivals and depth phases can also lead to a more accurate
estimation of focal depths (Umino et al., 1995; Engdahl et
al., 1998; Bai et al., 2003; Gamage, 2005). Our strategy
has been to improve the double-difference earthquake loca-
tion algorithm using s P phases, which provide independent
evidence of the absolute focal depths.

The Nankai Trough is one of the best-studied subduction
zones in the world (see Nakamura et al., 1997; Ishikawa,
2001; Obana et al., 2003) and is where the Philippine Sea
plate (PHS) is subducting beneath the overriding Eurasia
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plate with a convergence rate of around 5–6 cm/year (Seno
et al., 1993). The 2004 earthquake offshore of the Kii
peninsula occurred close to the deformation front of the
Nankai Trough (Fig. 1). Since seismological stations are
mostly located in onshore areas, the insufficient station cov-
erage led to significant uncertainty in the depth determina-
tion. Five pop-up type ocean bottom seismometers (OBSs)
were initially deployed on September 8 (3 days after the
mainshock) at a spacing of about 10 km; beginning on
September 14, 25 OBSs were operating in order to cover the
whole region of the aftershocks (Sakai et al., 2005). Most
of the hypocenters determined by the Japan Meteorological
Agency (JMA) (Fig. 2(a)) were deeper than 30 km, whereas
most of the hypocenters relocated by OBS data (Fig. 2(b))
or by double-difference analyses with direct P- and S- ar-
rival times (Enescu et al., 2005) were shallower than 30 km.
However, earthquakes with magnitudes greater than 4 can-
not be located accurately using OBS data because of the
limited dynamic range of the OBS recording system (Sakai
et al., 2005).

2. s P Depth Phases at Epicentral Distances of 120
to 300 km

With the operation of the High Sensitivity Seismograph
Network (Hi-net) throughout Japan, high-quality seismo-
grams enable us to identify depth phases at local epicen-
tral distances for small earthquakes. Distinct later phases
(which we call here the X phases) were observed for the
foreshock and the aftershock sequences associated with the
2004 earthquake offshore of the Kii peninsula at epicentral
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Fig. 1. Map of the Japan Islands showing the location of the 2004 earth-
quake offshore of the Kii peninsula (the open circle) and the tectonic set-
ting. Curved lines show the Japan Trench, Sagami Trench and Nankai
Trench, which are the major plate boundaries in the Japan region.

distances between 120 and 300 km (Fig. 3). The properties
of these phases are as follows:

1) They are observed between the direct P- and S- wave
arrivals, with a travel time delay of 7–11 s following
the P .

2) They are dominant on the vertical-component seismo-
grams.

3) Their apparent velocities are almost the same as those
for the direct P waves.

4) Their particle motions are similar to those of the direct
P phases.

To investigate the origin of the X phases, we have cal-
culated the travel times using a two-dimensional (2-D) ray-
tracing program (Zelt and Smith, 1992). This program uses
an efficient numerical solution of ray tracing equations and
a simulation of smooth layer boundaries to yield stable in-
version results. The 2-D P-wave velocity structure was
determined by Nakanishi et al. (2002) from an OBS seis-

(a) (b)

Fig. 2. Comparison between (a) the JMA hypocenters and (b) the hypocenters determined by five OBS instruments (After Sakai et al., 2005). Broken
lines indicate the Nankai Trough. Most of the hypocenters located by JMA are deeper than 30 km, whereas most of the hypocenters located with the
OBS instruments are shallower than 30 km.

mic experiment. The S-wave velocities can be computed
by a constant V p/V s ratio of 2.5 for the sedimentary wedge
layer and a V p/V s ratio of 1.73 for other layers (Obana et
al., 2003). The similarity between the observed and the cal-
culated travel times suggests that the X phase is a s P wave,
which takes-off upward as a S wave from the focus, con-
verts to a P wave at the water-sediment boundary at a point
relatively near the epicenter, then dives into the Earth again
(Fig. 4). Distinct s P phases at small epicentral distances
were recorded from the foreshock and aftershock sequences
of the 2004 earthquake offshore of the Kii peninsula as well
as from a large number of offshore events in northeastern
Japan (Umino et al., 1995; Wang and Zhao, 2005).

3. Earthquake Relocation Method
3.1 Double-difference algorithm for direct P and s P

waves
When there is a dense distribution of earthquakes, the ray

paths between the source region and a common station are
similar, and thus errors introduced by crustal heterogeneity
can be substantially eliminated. A common travel-time
difference equation between two events i and j at the same
station k is as

∂t i
k

∂m
�mi − ∂t j

k

∂m
�m j = dr i j

k (1)

(after Waldhauser and Ellsworth, 2000). Where t i
k is

the travel time from events i to station k, �mi =
(�xi , �yi , �zi , �t i ) is the change in the hypocentral pa-
rameters of event i , and dr i j

k = (t i
k − t j

k )obs − (t i
k − t j

k )cal

is the residual between observed and calculated differen-
tial travel time between the two events i and j . The partial
derivatives of t with respect to m are the components of the
slowness vector of the ray connecting the source and re-
ceiver measured at the source, which can be written out in
full as formulas (2) to (4).

∂t

∂x
= sin(ih) cos(Az)/v (2)

∂t

∂y
= sin(ih) sin(Az)/v (3)

∂t

∂z
= cos(ih)/v (4)
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(a)

(c)

(b)

Fig. 3. An example event showing s P phases. (a) Three-component seismograms recorded at the Hi-net station N.TKEH, which is indicated by solid
triangle in the inset. (b) Particle motions of P , s P , and S waves recorded at the same station, N.TKEH. (c) Recorded section of vertical-component
seismograms reduced by 8 km/s. Waveforms are band-pass-filtered from 1 to 4 Hz. This example is event 17 in Table 1.

where v is the velocity, and ih and Az are the take-off an-
gle and the azimuthal angle from source to station, respec-
tively. Equations (1) to (4) are considered to be the common
equations of the double-difference earthquake location al-
gorithm for both the direct P and the s P phases even though
their take-off angles (i P

h and i s P
h ) are different.

3.2 Double-difference algorithm including s P phases
At regional distances, if a seismic station is far from an

earthquake, the take-off angle i P
h approaches 90◦ and the

corresponding coefficient cos(i P
h ) is small. Therefore, the

equations for the direct waves are not sensitive to focal

depths and subsequently lead to large errors in focal depth
determination. The calculation of i s P

h is an important step
in the improvement of the double-difference earthquake lo-
cation algorithm using s P phases. The 2-D ray-tracing pro-
gram of Zelt and Smith (1992) calculates i s P

h using an iter-
ative shooting/bisection search mode while tracing through
the velocity structure. The 2-D ray-tracing equations are a
pair of first-order ordinary differential equations that can be
written in the following form:

dx

dz
= tan θ,

dθ

dz
= (vz tan θ − vx )

v
(5)
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Table 1. Comparison of the location results for 36 earthquakes. The M j is a local magnitude defined and calculated by JMA. The date and origin time
are local time in Japan.

No. Date M j This study JMA
Origin time (h:min:s) (λE /(◦)) (ϕN /(◦)) H/km Origin time (s) (λE /(◦)) (ϕN /(◦)) H/km

1 2004:09:05 3.5 19:53:45.08 137.21 33.07 19.91 45.06 137.21 33.07 37.78
2 2004:09:05 3.7 19:56:05.04 137.20 33.07 20.51 05.08 137.20 33.07 37.70
3 2004:09:05 4.5 20:15:57.86 137.15 33.11 22.69 57.96 137.14 33.11 39.08
4 2004:09:05 3.6 20:20:20.08 137.20 33.07 17.98 20.18 137.20 33.07 36.43
5 2004:09:05 3.5 20:34:43.32 137.23 33.07 22.52 43.38 137.23 33.08 39.43
6 2004:09:05 4.1 21:36:17.92 136.94 32.99 24.85 18.00 136.94 33.00 39.05
7 2004:09:05 4.0 22:15:39:04 137.09 33.21 27.57 40.16 137.11 33.20 38.21
8 2004:09:05 4.1 22:52:22.16 136.73 32.98 21.57 22.80 136.73 32.98 33.00
9 2004:09:05 3.6 23:01:32.80 136.70 32.99 21.26 32.76 136.70 32.99 37.00
10 2004:09:06 4.3 00:53:19.07 137.13 33.26 15.38 18.89 137.15 33.27 46.56
11 2004:09:06 3.8 01:02:27.27 136.94 33.36 19.78 27.46 136.94 33.37 48.19
12 2004:09:06 4.3 01:06:42.34 136.92 33.22 16.37 42.39 136.92 33.22 40.00
13 2004:09:06 4.2 01:12:24.69 137.02 33.10 16.74 24.72 137.02 33.10 36.00
14 2004:09:06 4.5 01:13:56.01 136.95 33.02 32.13 56.05 136.95 33.02 43.00
15 2004:09:06 4.7 02:34:09.18 137.01 33.07 17.60 09.25 137.01 33.07 36.54
16 2004:09:06 3.9 08:20:49.78 136.89 33.27 16.20 49.81 136.90 33.25 47.05
17 2004:09:06 3.7 13:56:12.41 137.07 33.14 16.35 12.37 137.07 33.13 41.74
18 2004:09:06 4.2 15:35:44.21 137.07 33.11 16.56 44.22 137.07 33.11 37.95
19 2004:09:06 4.1 19:39:46.62 137.21 33.12 20.59 46.84 137.20 33.12 35.15
20 2004:09:06 3.8 23:29:50.28 136.77 32.96 18.85 50.30 136.78 32.95 42.00
21 2004:09:07 3.8 02:23:36.96 136.78 32.96 21.28 37.08 136.78 32.97 37.00
22 2004:09:07 3.6 02:49:21.83 136.73 32.96 18.35 21.82 136.73 32.97 35.00
23 2004:09:07 3.8 10:37:09.08 137.17 33.15 18.86 09.11 137.17 33.15 37.86
24 2004:09:07 3.5 14:45:54.88 137.43 32.92 16.16 54.64 137.43 32.92 42.57
25 2004:09:07 3.7 15:51:49.14 137.43 32.92 17.95 48.84 137.43 32.92 43.34
26 2004:09:08 4.1 02:20:31.50 136.71 32.94 17.13 31.36 136.71 32.93 35.00
27 2004:09:08 3.6 03:58:17.69 136.75 32.94 18.02 17.55 136.75 32.94 38.81
28 2004:09:08 3.6 04:42:50.54 136.82 33.40 16.01 50.46 136.81 33.41 39.29
29 2004:09:09 3.8 00:13:44.76 136.94 33.24 15.68 44.92 136.94 33.24 38.31
30 2004:09:09 4.0 03:50:42.88 137.26 33.11 17.17 42.96 137.26 33.11 43.48
31 2004:09:09 3.5 09:18:51.69 136.70 32.92 16.08 51.66 136.70 32.92 31.56
32 2004:09:10 3.7 11:10:32.91 136.67 33.08 17.61 33.00 136.66 33.07 37.28
33 2004:09:11 3.6 20:04:48.24 136.77 32.88 18.48 48.48 136.77 32.89 35.03
34 2004:09:12 3.5 09:52:54.51 136.79 33.44 15.00 54.39 136.81 33.42 40.85
35 2004:09:13 3.5 13:50:16.34 137.18 33.10 18.16 16.41 137.18 33.10 39.85
36 2004:09:25 3.5 08:51:06.80 136.71 32.90 16.85 06.87 136.71 32.90 36.00

Fig. 4. Ray path diagram of P waves and s P waves (top panel) and comparisons of travel times between the observed values (vertical bars) and the
traced values (curves). Inset shows the P-wave velocity model from an OBS seismic experiment. The upper and lower layer velocities are given for
each layer, with the exception that a constant velocity was used in the seawater layer. The S-wave velocities are computed by a constant V p/V s ratio
of 2.5 for the sedimentary wedge layer and 1.73 for other layers. A reduced velocity of 8 km/s has been applied. The example with a focal depth of
21.3 km is event 17 listed in Table 1.

with initial conditions x = x0, z = z0, θ = θ0 (Cêrvený et
al., 1977: equation 3.19’). The variable θ is the angle be-
tween the tangent to the ray and the z axis. The z coordinate
is the positive downward. The point (x0, z0) is the source
location, and θ0 is the take-off angle.

4. Data
According to the JMA catalog, there was a total of 225

earthquakes with magnitudes greater than 3.5 during the pe-
riod between September 5 and September 30, 2004 (Fig. 5).
Among those events, two earthquakes (the Mw=7.3 fore-
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Fig. 5. Epicenter distribution of earthquakes with magnitudes greater
than 3.5 in the period between September 5 and September 30, 2004
listed in the JMA catalog. Solid circles indicate events with more
than six s P phase identifications; open squares. with one to five s P
phase identifications; pluses, without s P phase identifications. Four
large pluses indicate events with magnitudes greater than 6. Curved line
shows the Nankai Trench.

shock and the Mw=7.5 mainshock) had magnitudes larger
than Mw=7.0, two (the Mw=6.7 aftershocks) had magni-
tudes of Mw=6.0–6.9, seven had magnitudes of Mw=5.0–
5.9, 68 had magnitudes of Mw=4.0–4.9, and 146 had mag-
nitudes of Mw=3.5–3.9. The arrivals of s P waves were
identified on seismograms recorded at Hi-net, which has
been operated by the Japanese National Research Institute
for Earth Science and Disaster Prevention (NIED) since
1999. Of these 225 events, 36 had s P phase identifications
at more than or equal to six stations (solid circles in Fig. 5),
and 39 had s P phase identifications at one to five stations
(open squares in Fig. 5). For the foreshock and the main-
shock, pairs of later P and S phases were recorded after
the initial P and S phases, which are different from the s P
phases. The 1-D P- and S-wave velocity structure (Fig. 6)
used in double-difference analyses are derived from Nakan-
ishi et al. (2002) and Obana et al. (2003).

For the 36 events with more than six s P identifications,
we obtained hypocenters and origin times by including s P
phases in the double-difference earthquake location algo-
rithm. There was a total of 144 unknowns for the latitudes,
longitudes, depths, and original times of each event, and
2355 equations for P waves, 2040 for S waves, and 1004
for s P waves.

5. Results
The relocation results of the 36 earthquakes are listed in

Table 1 and shown in Figs. 7, 8, and 9. The seismic ac-
tivity started with a Mw=7.3 foreshock on a north-dipping
reverse fault plane striking in nearly an east-west direc-
tion. After the foreshock, most events took place along the
deformation front of the Nankai Trough (Fig. 8(a)). The
Mw=7.5 mainshock occurred about 5 h after the foreshock
on a multiple faulting with primarily two different fault
planes: a northwest-tending strike-slip fault plane and a
south-dipping reverse fault plane (Miyoshi and Ishibashi,
2005; Park and Mori, 2005; Satake et al., 2005; Yagi,
2005). After the mainshock, earthquakes extended in both
the northwest and southwest directions from the location of

Fig. 6. Comparison of velocity models. V p is used by JMA (the dotted
line); V p and V s are used in double-difference analyses (the solid line
and the broken line, respectively).

the mainshock (Fig. 8(b)). Two major aftershocks occurred
on September 7 and September 8, respectively, in a similar
location. After the first major aftershock, some small after-
shocks seemed to have been distributed at the southeast and
southwest of the whole region of aftershocks (Fig. 8(c) and
(d)).

The Moho discontinuity in the focal area of the 2004
earthquake offshore of the Kii peninsular is about 13 km in
southeast and about 15 km in northwest (Nakanishi et al.,
2002). Focal depths of the 36 events relocated in this study
range between 15 and 35 km, which are about 15 km shal-
lower than the JMA locations and almost the same depth as
the deep branch of the OBS locations (Fig. 9(a)). The fo-
cal depths increased with the increases in the observed time

Fig. 7. Comparison between the JMA hypocenters (triangles) and the
hypocenters relocated in this study (circles). Curved line indicates the
Nankai Trough. Vertical sections along latitude (right) and longitude
(lower) are also shown.
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(a) (b)

(c) (d)

Fig. 8. Map views of epicenters for several time periods: (a) time from the foreshock to the mainshock, (b) time from the mainshock to the first major
aftershock, (c) time from the first aftershock to the second major aftershock, (d) time after the second major aftershock. Epicenters of 36 events
together with event number are relocated in this study. Focal mechanisms of the foreshock and the mainshock are by Yagi (2005) from teleseismic
waveform inversion. Other symbols are the same as those used in Fig. 5.

 

(a)

(b)

Fig. 9. (a) A cross-section of relocated hypocenters along the plate-subduction direction AB (in the inset) with 2-D velocity boundaries (after Nakanishi
et al., 2002). Earthquakes are located in the PHS slab beneath the trench-outer rise region. Coseismic rupture zone of the 1944 Tonankai earthquake
estimated by tsunami and geodetic data (Ando, 1975) is shown at the top of the figure. (b) Observed time separations between the P and s P phases
versus focal depths.
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separations between the P and s P phases (Fig. 9(b)).
The accuracy of absolute hypocenter locations is gener-

ally controlled by several factors, including the accuracy of
velocity structure, available phases, arrival-time reading ac-
curacy, and the network geometry (Pavlis, 1986). In this
study, the location accuracy was constrained by the double-
difference analyses with s P phases. The stations used in
this study had an azimuthal gap of about 260◦, which meant
that the poor network geometry alone would cause misloca-
tions of about 0.25 km in the epicenters and about 1 km in
the depths (Bai et al., 2006). All of the stations are located
north of the region of the aftershocks, which caused the lo-
cation errors in the north-south direction to be larger than
those for the east-west direction.

6. Discussion and Conclusions
Locating earthquakes in offshore regions is problematic

due to the uncertainties in the local velocity structure, the
lack of near-source recordings, and poor azimuthal cover-
age of stations. We included the travel times of the s P
phases in the double-difference earthquake location algo-
rithm to improve the accuracy of depth determination. All
events were located in the oceanic uppermost mantle. Be-
tween the period of the foreshock and the mainshock, events
took place along the deformation front of Nankai Trough.
After the mainshock, events extended in both the northwest
and southwest directions from the location of the main-
shock. Following the first major aftershock, some events
seemed to be distributed at the southeast and southwest of
the whole region of aftershocks.

There might be some uncertainties for identifying later
phases, such as the sediment-basement reflections (sd P and
pd P), the water-sediment reflections (pP), and the water-
surface reflection (pwP) (e.g., Pearce, 1981; Engdahl and
Billington, 1986). The sea bed and sea surface usually
have a high impedance contrast, and as a result of some
complications it could be possible that s P arrives at about
the same time as pwP . However, if the amplitude of the
later phase between P- and S-wave arrivals is larger than
that for P wave, its origin should be S.

The Tonankai earthquake (Mw=8.0) of December 7,
1944 and the Nankai earthquake (Mw=8.2) of December
21, 1946 occurred offshore of southwest Japan in this re-
gion. The coseismic rupture zone of the 1944 Tonankai
earthquake estimated by tsunami and geodetic data (Ando,
1975) is shown along the top of the Fig. 9(a). Mi-
croearthquake activity is low in the rupture area of the
Tonankai earthquake, whereas it is higher in trench-outer
rise region (Seno, 2005; Sakai et al., 2005, see the top of
Fig. 9(a)).

The effective elastic thickness of the PHS in the focal
region, estimated from the seafloor age, is about 35 km
(Yoshioka and Ito, 2001). Most of the hypocenters located
by JMA that are deeper than 35 km might not be reason-
able estimates. It is considered that reverse fault events
tend to occur prior to, and normal fault events tend to oc-
cur after, a large nearby interplate earthquake (Lay et al.,
1989). The occurrence of the 2004 earthquake offshore of
the Kii peninsula with reverse fault plane in the trench-outer
rise region may suggest that the compressional stress is ac-

cumulating in the adjacent interplate region and, therefore,
there is a potential for future large earthquakes.
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