A MODEL FOR THE POSTSEISMIC DEFORMATION FOLLOWING THE 2000 WESTERN TOTTORI EARTHQUAKE (REVISITED)

Manabu Hashimoto¹⁾, Takao Tabei²⁾, Takeshi Sagiya³⁾
and Takeo Ito³⁾
1: RCEP, DPRI, Kyoto University,
2: Kochi University
3: Nagoya University

Motivations and Objectives

- Modeling of postseismic deformation obtained by JUNCO and GSI after the 2000 Western Tottori earthquake
- Modeling with exponential function and afterslip inconsistent
- Fitting with logarithmic function based on rate-state dependent friction law
- Estimate of variable slip distribution
- Estimate of poroelastic rebound

Location and Distribution of GPS Sites

Terrain data by Kisimoto (1999)

Hypocentral data by JMA (2000)

Summary of Observation and Data Processing

- Dual freq. receivers (Ashtech for JUNCO, Trimble and Ashtech for GEONET)
- 30sec sampling, 24 hour, Elevation mask 15deg.
- □ Static analysis with Bernese 4.2
- Displacement is converted to those w.r.t.
 GEONET 950378 (Shikano, E Tottori)

Temporal Variations in E-W and N-S Components of GPS sites (DOY280-447)

Formula by Marone et al.(1991)

$$U_{p}(t) = \alpha \ln\left(\frac{\beta}{\alpha}t+1\right) + V_{0}t + U_{ref}$$

Parameter related to (a-b) in the velocity-strengthening layer

- Coseismic velocity
- V₀: Steady state velocity
- U_{ref}: Offset of displacement at the start of observation

Procedure of Fitting

- Generate time series of movement in the direction of the maximum displacement
- \Box Grid-search for / (0.001~500)
- Estimate , V_0 , U_{ref} for all grid point of / using the least square method
- Non-linear fitting of exponential function to the same time series for comparison

Movement of 9031 and 9032

Movement of AKAY and IJIR

Movement of KASH and 950379

Movement of KRSK and NEU0

Movement of KSMT and 960654

Distribution of

Distribution of

Distribution of V₀

Estimate of (a-b)

Afterslip Model (JUNCO data)

- Using only JUCNO data
- Shallow strike slipLeft lateral ~5cm

Observed Postseismic Displacement (Oct.25~31 – Mar.15~21)

- □ Left lateral displacements
- Larger on the east side of aftershock zone
- Larger in the vicinity of aftershock zone
- implies shallow source

Afterslip Model

- \square 3 segments(10x21km²)
- □ N141E, Dip 95deg
- Dislocation
 - 6cm (326deg)
 - 3cm (102deg) !!
 - 4cm (332deg)

What should we do for it?

- Other source than afterslip
- Viscoelastic adjustment Possibly NO
- Poroelastic rebound
 - Coseismic response with high Poission's ratio
 - Transient flow of groundwater
 - Drained state with low Poisson's ratio

Poroelastic Rebound

- Sagiya et al's. (2001)
 one fault model
- Poisson's Ratio
 - Undrained=0.31
 - Drained=0.27
- Difference between undrained and drained displacement field

Summary

- □ Logarithmic function fit the data as well as exp.
- □ Large in the vicinity of source region
- Opposite sign for V_0 on the both sides of the fault
- Complicated afterslip distribution
- 's give (a-b) consistent with lab. data if the velocity strengthening layer is as thin as 5km.
 Poroelastic rebound might explain the displacements at 9031and NIBU etc.