The 1996 Onikobe Earthquake Swarm: *Revisited*

Youichiro Takada & Masato Furuya Dept. Natural History Sciences, Hokkaido Univ.

ytakada@mail.sci.hokudai.ac.jp

E-san

Oshima-Oshima 1°30 Mutsu-Hiuchi-dake Osore-yama

Megata Hachimantai Akita-Yake-yama

N39°30'

rokai

Hillor

N30-30

Azuma

Zao

E141°

Onikobe

Akita-Komaga-take

Iwaki Hakkoda Group N40°30 Towada

Iwate 1

urikoma

ruao

Sendai

Onikobe Caldera

Part of Backbone Range

& Volcanic chain, NE Japan

Sea of Japan E135° E137° E139*

Numazawa Adatara Bandai

Nasu Myoko Hiuchi Takahara Niigata-Yake-yama Omanago Group Nikko-Shirane -Hiuchi 💥 Takahara Nantai Tate-yama < Shiga N36°30 Akagi Washiba-Kumonotaira Haruna Asama

> Yake-dake Tateshina Saitama On-take

Imperial Palace, Tokyo, Japan Kawasaki Tokyo (Chiba0'

Fuji Yokohama Shizuoka Hakone

© 2007 Europa Technologies © 2007 ZENRIN © 2007 European Space Adency E143°

E145°

C 2005

Oki-Dogo

Kyoto

Osaka Kobe

• Nagoya

Qkaver.

Onikobe Earthquake swarm (1)

Onikobe Caldera

10 km

Larger than M5.0 1996/8/11 3:12 M5.9 1996/8/11 3:54 M5.4 1996/8/11 8:10 M5.7 1996/8/13 11:13 M5.0

Hypocenters provided by JMA (1996/8/11~1996/9/30)

Onikobe earthquake swarm (2)

Fig. 8. Fault planes of relatively large earthquakes that occurred in the period from 1976 to 1996 in Onikobe area (Umino *et al.*, 1998).

Fault models inferred from seismic observations (modified after Umino et al., 1998)

Motivation and Scope

 Fault model inferred from the seismic data can't explain the surface deformation derived by InSAR (Yarai et al., 2003; Aoki 2003)

Need better fault model including aseismic slip

2, Linkage between topographic evolution and fault activity.

JERS-1 (L-band) processed with GAMMA Independent Dates, DEM:GSI 50m-mesh

Averaged Interferogram

Characteristics:

- Mt.Torage-san Area
 Reversed triangle region of LOS < 0 with
 Steep phase gradient of east & west edge
- 2, Positive LOS over NE part of the Onikobe caldera
- 3, Small wavelength LOS <0 areas around western part of the Onikobe caldera

Steep Gradient

Topography of Uplifted Area

orag

Topographic Cross-sections

Sharp Ridge Like Caldera Wall

Another Two Thrust Faults

Construction of Fault Model

Initial Model:

F1: M5.9+M5.4 (Aug11, Thrust), after Umino et al. (1998)
F2: M5.7 (Aug 11, Strike slip), U98
F3: M5.0 (Aug 13), U98
F4: Western Ridge, Thrust (down to E), Shallow, Small Mo
F5: Eastern Ridge, Thrust (down to W), Shallow, Small Mo

Forward modeling by Okada (1992) → Modifying fault parameters (Trial & Error) Rectangular Fault, Uniform slip

Best Model (at present):

Latitude (deg), Longitude, Length (km), Width, Depth, Dip(deg), Strike, Slip Angle, Slip(m)

F1: 140.633	38.918	10.0	5.3	6.7	40.0	N20W	108.0	0.52
F2: 140.640	38.867	10.0	6.5	6.0	90.0	N50E	180.0	0.6
F3: 140.630	38.820	7.0	3.0	3.0	40.0	N45E	115.0	0.3
F4: 140.600	38.910	6.0	4.0	2.5	85.0	N30W	80.0	0.2
F5: 140.663	38.915	5.0	6.0	3.5	85.0	N20E	70.0	0.2

Result (1)Observed LOSSynthetic LOS

Result (2)

Residual (LOS – Synthetic LOS)

Error: ±3rad(~5.7cm), Short-Wavelength

Need Further Improvement...

Grid Search

Slip Distribution by Inversion

Topography & InSAR

Mt.Torage-san

Topographic Growth & Thermal Activity

Air View of Uplifted Area from NE

GSI 50m-DEM + 1:50000 Map with Kashmir 3D

Summary

Sharp phase change across the eastern and the western border of Harukawa and Torage-sawa drainage area can be explained by introducing two high-angle thrust faults (not identified from seismic data).

Those rivers and sharp ridges surround a domal structure where uplift (LOS < 0) signal is maximum. Such events would intermittently contribute the topographic growth on a long time-scale.

Non-uniform slip should be considered.

Acknowledgement: This study is funded from JSPS. The original JERS-1 level-0 data are copyrighted by, and courtesy of METI/JAXA.

