Preliminary study on

新潟県中越地震・中越沖地震震源域での Envisat画像を用いたInSAR時系列解析

InSAR time-series analysis using Envisat images: application on the region of two earthquakes in Niigata, central Japan

福島 洋 京都大学防災研究所

Yo Fukushima

Disaster Prevention Research Institute,

Kyoto University

Motivation

- I work for RCEP of DPRI; we have been measuring crustal deformation for decades, trying to detect subtle precursors of EQs
- Can InSAR contribute also?
- Fully exploit C-band data
- Solution: Persistent scatterer (PS) and small-baseline (SB) approaches

L and C; difference in the quality of single interferograms is evident.

Niigata Chuetsuoki EQ, Mw 6.6, Jul. 2007

ALOS (L-band) (from JAXA website)

Envisat (C-band)

C-band still has advantages.

- Data in a long period
- Regularly acquired with shorter time intervals than that of PALSAR
 - Less ionospheric effects than L-band

PS and SB = High precision (mm level) InSAR time-series analysis

- Both use tens of multitemporal images and estimate time-series of LOS displacements
- PS methods: use pixels of point scatterers

SB methods: use pixels that are stable with time

StaMPS/MTI (by Andy Hooper)

- Available from http://www.hi.is/~ahooper for noncommercial use
- Extract ground displacements for persistent scatterer pixels from multi-temporal acquisitions
- Uses Doris software to compute interferograms, can start from SLCs or from raw data (by using ROI_PAC)
- StaMPS/MTI (beta): PS + SB (only for collaborative purposes at the moment)

StaMPS characteristics

Phase analysis for PS identification (same with other PS algorithms)

$$\psi_{x,i} = W\{\phi_{D,x,i} + \phi_{A,x,i} + \Delta\phi_{S,x,i} + \Delta\phi_{\theta,x,i} + \phi_{N,x,i}\}$$

Phase = Wrap (defo + DEM (look ang.) + atmos + orbit + other)

No requirement for prior knowledge of deformation

Sophisticated 3D unwrapping algorithm

1. Computation of interferograms

2. Selection of PS pixels

3. Estimation of displacements

StaMPS algorithm

1. Computation of interferograms

2. Selection of PS pixels

3. Estimation of displacements

- Selection of master

total correlation is maximized

- Coregistration to the master image

"Network" coregistration, use good estimation of slaveslave offsets to derive the final master-slave offsets

- Flattening

StaMPS algorithm

1. Computation of interferograms

2. Selection of PS pixels

3. Estimation of displacements

Initial selection
based on amplitude
dispersion

- Phase modeling

 $\psi_{x,i} = W\{\phi_{D,x,i} + \phi_{A,x,i} + \Delta \phi_{S,x,i} + \Delta \phi_{\theta,x,i} + \phi_{N,x,i}\}$ Defo DEM atmos orbit other Pixel with small noise term (last term) can be PS candidate

Selection of PS
based on the two

StaMPS algorithm

1. Computation of interferograms

2. Selection of PS pixels

3. Estimation of displacements

- Spatio-temporal unwrapping on PS pixels

- Eliminate nuisance terms by filtering

Atmos. and orbit effects of the master are extracted by low-pass filtering

Atmos. effects of the slave are extracted by low-pass spatial filtering and highpass temporal filtering

Target area: Niigata prefecture, central Japan

- Chuetsu: Mw 6.5 in Oct 2004, Chuetsu-oki: Mw 6.6 in July 2007
- High strain rate
- Focus on the interseismic interval for now

SAR scene location and GEONET GPS stations used for comparison

 13 stations in the epicentral areas

PS interferograms, master = 18 Aug. 2005. 77,521 PS pixels (~30 points/km²)

StaMPS unwrapped interferograms

StaMPS SB analysis: algorithm

- Compute small-base-line interferograms
- Invert for time-series
- Single-look with range and azimuth filtering
- Select stable pixels based on amplitude difference variance
- 3D unwrapping
- Can be merged with PS result

StaMP

- Compute s interferogr
- Invert for t Single-lood azimuth fil Select stal
- on amplitu variance
- 3D unwrag
- Can be me result

Example of unwrapped interferograms (contain orbital errors)

Residuals after optimization (permits evaluation of likelihood of the solution)

To conclude

- Performed persistent scatterer and small-baseline analyses using StaMPS package.
- The postseismic deformation of the Chuetsu EQ seems to be consistent with GPS but noisier.
- Improvements in the analysis and more thorough evaluation of the results are to come.
- More data as well; images 1992 2007 are waiting for being analyzed (total ~60 images).