Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii

Outline:

- past earthquake-volcano interaction at
- 2002-2005 intrusion
- effects on the volcano
- Kilauea deformation

Falk Amelung*, Sang-Ho Yun, Thomas Walter, Paul Segall, Sang-Wan Kim

> (*) Rosenstiel School of Marine and Atmospheric Sciences (RSMAS) University of Miami, Florida, USA

Kilauea: continuous eruption since 1983

Mauna Loa: eruptions in 1950, 1975, 1984

- □ rift intrusion
- seismic/aseismic decollement slip
- □ flank motion
- magma chamber inflation/deflation

1975 M7.2 Kalapana earthquake

- □ rift intrusion
- seismic/aseismic decollement slip
- □ flank motion
- magma chamber inflation/deflation

1975 M7.2 Kalapana earthquake

- □ rift intrusion
- seismic/aseismic decollement slip
- □ flank motion
- magma chamber inflation/deflation

Did the 1974 earthquake trigger the 1975 eruption ?

- □ rift intrusion
- seismic/aseismic decollement slip
- □ flank motion
- magma chamber inflation/deflation

Did the 1974 earthquake trigger the 1975 eruption ?

- □ rift intrusion
- seismic/aseismic decollement slip
- □ flank motion
- magma chamber inflation/deflation

Earthquakes and eruptions at Mauna Loa

• 17 eruptions since 1850

• 15 earthquakes sin 1850 (M>6)

• 75% of eruptions and earthquakes are part of 2-yr sequences (random probability is 20%)

earthquake-volcano interaction !

 pairs of NERZ eruptions and Kaoiki earthquakes.

 pairs of SWRZ eruptions and Kona or Hilea earthquakes

Stress changes due to earthquakes

Normal stress along the rift zone due to 1950 Kona earthquake

Walter and Amelung, JGR, 2006

The 1950 dike intruded in a section of the rift zone unclamped by the earthquake !

Stress changes due to earthquakes

Normal stress along the rift zone due to 1983 Kaoiki earthquake

Walter and Amelung, JGR, 2006

The 1984 dike intruded in a section of the rift zone unclamped by the earthquake !

Stress changes due to dike intrusions

Stress changes due to dike intrusions

Stress changes at magma body due to earthquakes

Conclusion:

magma chamber decompression encourages eruptions

> magma chamber

All earthquake types cause extension.

Walter and Amelung, JGR, 2006 Walter and Amelung, Geology, 2007

Mauna Loa inflation 2002-2005

10 km

GPS-measured baseline length

Interferograms

Radarsat

- Jan 2002 Dec 2005
- 4 beams (23.5° 43.5°)
- 5-8 interferograms stacked per beam
- repeat cycle of 24 days -> 60 images/yr

Ascending Standard Beam 6

Descending Standard Beam 1

incidence angle 43.5°

incidence angle 23.5°

Mauna Loa volcano, 2002-2005 2-D velocity field

based on ~60 SAR images

Amelung et al., Science, 2007

Magma source model: Distributed dike opening + Mogi

this model: independent dislocation and point sources. next model: account for interaction between dike and magma chamber using a constant magma excess pressure model --> inferred parameter: excess pressure, chamber radius

Magma source model: Distributed dike opening + Mogi

this model: independent dislocation and point sources.
next model: account for interaction between dike and magma chamber using a constant magma excess pressure model
--> inferred parameter: excess pressure, chamber radius

Magma source model: Distributed dike opening + Mogi

this model: independent dislocation and point sources. next model: account for interaction between dike and magma chamber using a constant magma excess pressure model --> inferred parameter: excess pressure, chamber radius

Magmatic system modelling approach

0	0	0	0	0
0	0	1	1	0
0	0	0	1	0
0	1	0	0	0
0	0	0	0	0

Coupled constant excess pressure dike-chamber model (binary dike)

Dike opening depends on how open elements are connected (Yun et al., 2005)

Geophysical Inversion: Boundary Element Approach

- Dike divided into elements, either open or closed, subject to constant pressure
- Simulated Annealing Procedure used to find optimal parameters.
- Invert for : excess pressure dike geometry sphere geometry

Simulation: Sang-Ho Yun

Geophysical Inversion: Boundary Element Approach

- Dike divided into elements, either open or closed, subject to constant pressure
- Simulated Annealing Procedure used to find optimal parameters.
- Invert for : excess pressure dike geometry sphere geometry

Simulation: Sang-Ho Yun

Preferred model

Mauna Loa: Model Fit

Preferred model

Differences are due to

- simplified chamber model
- unmodelled decollement slip.

Why did the intrusion occur in the SWRZ ?

Proposed answer: Stress transfer

Where would we expect the next intrusion?

2002-2005 caused strongest unclamping next to it.

Forecast: one of three scenarios will occur (stress model based):

- current intrusion continues and next eruption occurs from SWRZ
- current intrusion stops, next intrusion occurs into rift sections of strongest unclamping
- intrusion triggers earthquake (or aseismic slip)

- Coulomb stress for seaward motion along horizontal fault planes increased by > 0.5 MPa.
- Intrusion encouraged seismic or aseismic decollement motion
- Aseismic slip may already be occurring

Conclusions:

- 1. Magmatic system (2002-2005):
 - rift intrusion at depth under summit and SWRZ
 - magma chamber at 4.5 km below summit
 - magma chamber 1.3 km radius
 - magma excess pressure ~2 MPa/yr
- 2. Stress transfer:
 - intrusion occurred in rift section unclamped by 1983/84 earthquake and intrusion.
 - intrusion encouraged new intrusions into parts of SWRZ
 - intrusion encouraged decollement faulting (seismic or aseismic)

The dynamic Hawaiian volcanoes

Southflank seaward motion explained by decollement slip and rift intrusion (Owen et al.,2000)

LOS-velocity

- Southwest rift zone subsiding at 6-7 cm/yr
- South flank uplifting at 1.5 cm/yr

Southwest rift zone

East rift zone

- Southwest rift zone subsiding at 6-7 cm/yr
- South flank uplifting at 1.5 cm/yr

Continuity with time

Intrusions

Conclusions

Mauna Loa:

 \star magma intrusion into rift zone and shallow magma reservoir

★ intrusion occurrs into a section of the rift zone that was unclamped by the 1983 earthquake

 \star stress change modelling is a tool for intrusion forecasting

Kilauea

 ★ very dynamic with secular subsidence and uplift in the summit area, repectively
 ★ intrusions into east rift zone and summit area
 ★ time-series analysis needed

