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S U M M A R Y
In the framework of elasticity theory any indigenous source can be represented by a moment
tensor. We have succeeded in obtaining general expressions for internal deformation due to a
moment tensor in an elastic/viscoelastic multilayered half-space under gravity. First, starting
from Stokes’ classical solution, we obtained the expressions for static displacement fields due to
a moment tensor in an infinite elastic medium. Then, performing the Hankel transformation of
the static solution in Cartesian coordinates, we derived static displacement potentials for a mo-
ment tensor in cylindrical coordinates. Second, representing internal deformation fields by the
superposition of a particular solution calculated from the displacement potentials and the gen-
eral solution for an elastic multilayered half-space without sources, and using the generalized
propagator matrix method, we obtained exact expressions for internal elastic deformation fields
due to a moment tensor. Finally, applying the correspondence principle of linear viscoelasticity
to the elastic solution, we obtained general expressions for quasi-static internal deformation
fields due to a moment tensor in an elastic/viscoelastic multilayered half-space. The moment
tensor can be generally decomposed into the three independent force systems corresponding to
isotropic expansion, crack opening and shear faulting, and so the general expressions include
internal deformation fields for these force systems as special cases. As numerical examples we
computed the quasi-static internal displacement fields associated with dyke intrusion, episodic
segmental ridge opening and steady plate divergence in an elastic–viscoelastic two-layered
half-space. We also demonstrated the usefulness of the source representation with moment
tensor through the numerical simulation of deformation cycles associated with the periodic
occurrence of interplate earthquakes in a ridge-transform fault system.

Key words: Transient deformation; Elasticity and anelasticity; Mid-ocean ridge processes;
Kinematics of crustal and mantle deformation; Mechanics, theory, and modelling.

1 I N T RO D U C T I O N

Since Steketee (1958a, b) introduced the concept of dislocation into seismology, mathematical expressions for static deformation fields caused

by shear faulting in an elastic half-space have been obtained by many investigators (Chinnery 1961, 1963; Maruyama 1964; Press 1965; Savage

& Hastie 1966; Mansinha & Smylie 1971; Sato & Matsu’ura 1974; Iwasaki & Sato 1979; Matsu’ura & Tanimoto 1980; Okada 1992). The

elastic half-space model is a simple and good approximation to the real Earth for instantaneous coseismic crustal deformation. For long-term

crustal deformation, however, the elastic half-space model is no longer good approximation, because we cannot neglect the effects of stress

relaxation in the viscoelastic asthenosphere underlying the elastic lithosphere (e.g. Nur & Mavko 1974; Savage & Prescott 1978; Thatcher

& Rundle 1979, 1984; Matsu’ura & Iwasaki 1983; Matsu’ura & Sato 1989; Sato & Matsu’ura 1992, 1993; Hashimoto & Matsu’ura 2000;

Hashimoto et al. 2004). In general, the viscoelastic solutions of quasi-static problems can be obtained from the associated elastic solutions by

applying the correspondence principle of linear viscoelasticity (Lee 1955; Radok 1957), and so we need to obtain elastic solutions for layered

Earth models first.

For layered half-space models the mathematical expressions of surface deformation due to shear faulting have been derived with two

similar but different approaches. On the basis of general source representation (Ben-Menahem & Singh 1968a, b), Singh (1970), Jovanovich et
al. (1974a, b) and Rundle (1980) have obtained the elastic solutions with the up–going algorithm of the Thomson–Haskell propagator matrix

method (Thomson 1950; Haskell 1953). Applying the correspondence principle of linear viscoelasticity to these elastic solutions, Rundle

(1978, 1982a) has obtained the quasi-static solutions for an elastic–viscoelastic layered half-space. On the other hand, Sato (1971), Sato &
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Matsu’ura (1973) and Matsu’ura & Sato (1975) have obtained the elastic solutions with the down–going algorithm of the propagator matrix

method. Applying the correspondence principle to these elastic solutions, Matsu’ura et al. (1981), Iwasaki & Matsu’ura (1981) and Matsu’ura

& Sato (1989) have obtained the quasi-static solutions for an elastic–viscoelastic layered half-space.

The solutions derived with the up–going algorithm and those with the down–going algorithm are outwardly similar, but they are essentially

different in a computational point of view. Fukahata & Matsu’ura (2005) have revealed that the solutions derived with the up–going algorithm

become unstable above the source depth, and those with the down–going algorithm become unstable below the source depth. For example,

Roth (1990) and Ma & Kusznir (1992) have obtained the expressions for internal elastic deformation fields by extending the formulation

of Singh (1970). Their expressions become numerically unstable above the source depth. On the other hand, Matsu’ura & Sato (1997) have

obtained the expressions for internal viscoelastic deformation fields by extending the formulation of Matsu’ura et al. (1981). Their expressions

become numerically unstable below the source depth. Then, one way to avoid the numerical instability is to use the down–going algorithm

above the source depth and the up–going algorithm below the source depth. Pan (1997) and Wang (1999) took this way to obtain numerically

stable expressions for internal elastic deformation fields. Another way is to use a static (zero-frequency) version of the generalized reflection

and transmission coefficient matrix method (Kennett 1983). Xie & Yao (1989) took this way to obtain numerically stable expressions for

elastic internal deformation fields. Recently, by introducing the generalized propagator matrix that unifies the up–going and down–going

algorithms, Fukahata & Matsu’ura (2005) have obtained numerically stable expressions for elastic internal deformation fields. Applying the

correspondence principle of linear viscoelasticity to this elastic solution, Fukahata & Matsu’ura (2006) have obtained general expressions for

internal deformation fields due to shear faulting in an elastic/viscolelastic multilayered half-space under gravity.

As to isotropic expansion and crack opening in a layered half-space, on the other hand, we have not yet obtained the complete expressions

for internal deformation fields. For example, Rundle (1978, 1982b) and Fernández & Rundle (1994) have obtained the expression for elastic

surface deformation due to isotropic expansion. Folch et al. (2000) and Fernández et al. (2001) have obtained expressions for viscoelastic

surface deformation due to isotropic expansion. Roth (1993) has derived the expressions for internal elastic deformation fields due to crack

opening by extending his formulation of shear faulting (Roth 1990). Hofton et al. (1995) have obtained viscoelastic surface deformation due

to crack opening. In the derivation of theses expressions, however, only the up–going algorithm of the propagator matrix method is used, and

so they are numerically unstable above the source depth. On the other hand, He et al. (2003a) have obtained the expressions for elastic internal

deformation fields due to isotropic expansion and crack opening by extending the formulation of Xie & Yao (1989) for shear faulting, based

on the generalized reflection and transmission coefficient matrix method.

In the framework of elasticity theory any indigenous source can be represented by a moment tensor (Backus & Mulcahy 1976a, b). The

moment tensor, which is a second-order symmetric tensor with the diagonal elements of force dipoles and the off-diagonal elements of force

couples, can be decomposed into three independent force systems corresponding to isotropic expansion, crack opening and shear faulting.

By using the generalized reflection and transmission coefficient matrix method, He et al. (2003b) have formulated surface deformation due

to a moment tensor in an elastic layered half-space. In the present study, extending the formulation of Fukahata & Matsu’ura (2005, 2006) for

shear faulting, we obtain general expressions for internal displacement fields due to a moment tensor in an elastic/viscoelastic multilayered

half-space. In Section 2, we derive the expressions of static displacement potentials in cylindrical coordinates by performing the Hankel

transformation of Stokes’ classical solution in Cartesian coordinates. In Section 3, we obtain the expressions for internal displacement fields

due to a moment tensor in an elastic multilayered half-space. In Section 4, applying the correspondence principle of linear viscoelasticity to

the elastic solution, we obtain the expressions for internal displacement fields due to a moment tensor in an elastic/viscoelastic multilayered

half-space. In Section 5, as numerical examples, we show the quasi-static internal displacement fields associated with dyke intrusion, episodic

segmental ridge opening and steady plate divergence in the case of an elastic–viscoelastic two-layered half-space. We also show the deformation

cycle associated with the periodic occurrence of interplate earthquakes in a ridge-transform fault system.

2 S TAT I C D E F O R M AT I O N C AU S E D B Y A M O M E N T T E N S O R

2.1 Displacement potentials in cylindrical coordinates

We consider an infinite elastic medium with the following constitutive equation:

σkk = 3K εkk, σ ′
i j = 2με′

i j (1)

with

σ ′
i j = σi j − 1

3
σkkδi j , ε′

i j = εi j − 1

3
εkkδi j , (2)

where σ i j and ε i j denote stress and strain tensors, respectively, and K and μ are the bulk modulus and rigidity of the medium, respectively.

Infinitesimal deformation of the elastic medium is governed by well-known Navier’s equation:

ρ
∂2ui

∂t2
=

(
K + 1

3
μ

)
∂

∂xi

(
∂u j

∂x j

)
+ μ

∂

∂x j

(
∂ui

∂x j

)
+ fi , (3)

where ρ is density, and ui (i = 1, 2, 3) and fi (i = 1, 2, 3) are displacement and body force vectors, respectively. Stokes (1849) has obtained

a particular solution (Green’s tensor) of Navier’s equation for a unit impulsive point force fi = δ i pδ(x − ξ)δ(t − τ ) in Cartesian coordinates
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(x 1, x 2, x 3) as

Gip(x, t ; ξ, 0) = 3ζiζp − δi p

4πρR3

∫ R/β

R/α

sδ(t − s)ds + ζiζp

4πρα2 R
δ(t − R/α) − ζiζp − δi p

4πρβ2 R
δ(t − R/β) (4)

with

R =
√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2, (5)

ζi = xi − ξi

R
= ∂ R

∂xi
. (6)

Here, α and β are the P- and S-wave velocities of the medium, and δ i j is the Kronecker delta.

The dynamic displacement field ud
i (x, t) caused by the moment tensor Mpq(τ ) acting for τ ≥ 0 at a point ξ = 0 is written in the form of

convolution integral:

ud
i (x, t) =

∫ t

0

Gip,q (x, t − τ ; 0, 0)Mpq (τ )dτ , (7)

where G ip,q represents the partial derivatives of Green’s tensor Gip with respect to the source coordinate ξ q . The exact expression of ud
i (x, t),

which can be obtained by substituting eq. (4) into eq. (7), is given in Aki & Richards (1980). On the assumption that Mpq(t) becomes a

constant Mpq at t→∞, taking the limit of t→∞ for the exact dynamic solution, we can directly obtain the corresponding static solution

us
i (x) as

us
i (x) = 1

8πμR2
[γ (3ζiζpζq − ζiδpq − ζpδqi − ζqδi p) + 2ζqδi p]Mpq (8)

with

γ = (3K + μ)/(3K + 4μ). (9)

By using the relations in eq. (6), the above solution can be rewritten in vector form:

us(x) = 1

8πμ
[(γ − 1)∇(∇·s) + ∇×∇×s] (10)

with

s = M∇ R. (11)

Now we perform the transformation of variables from Cartesian coordinates (x 1, x 2, x 3) to cylindrical coordinates (r , ϕ, z):

x1 = r cos ϕ, x2 = r sin ϕ, x3 = z. (12)

Then, the elements of moment tensor M in cylindrical coordinates are related with those in Cartesian coordinates as⎛
⎜⎝

Mrr Mrϕ Mrz

Mϕr Mϕϕ Mϕz

Mzr Mzϕ Mzz

⎞
⎟⎠ =

⎛
⎜⎝

cos ϕ sinϕ 0

−sinϕ cos ϕ 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎟⎠

⎛
⎜⎝

cos ϕ −sinϕ 0

sinϕ cos ϕ 0

0 0 1

⎞
⎟⎠ (13)

and the distance R in eq. (5) is expressed as

R =
√

r 2 + z2. (14)

In static problems, as Takeuchi (1959) has shown, a proper representation of solution vectors us in terms of displacement potentials, Φs
1,

Φs
2 and Ψs , is given by

us = ∇Φs
1 − γ z∇Φs

2 + (2 − γ )

⎛
⎜⎝

0

0

Φs
2

⎞
⎟⎠ + ∇ ×

⎛
⎜⎝

0

0

Ψs

⎞
⎟⎠ . (15)

Comparing the above general representation with the specific expression for a moment tensor in eq. (10), we obtain a set of equations to be

solved for the displacement potentials:

∂

∂z

(
Φs

1 − γ zΦs
2

) + 2Φs
2 = 1

8πμ

(
γ

∂

∂z
∇·s − ∇2sz

)
(16)

(
∂2

∂z2
− ∇2

)
Ψs = 1

8πμ
(∇×∇×∇×s)z (17)

2

(
∂2

∂z2
− ∇2

)
Φs

2 = 1

8πμ
(∇×∇×∇×∇×s)z , (18)

where the subscript z denotes the z-component of the corresponding vector. From eqs (16)–(18) and eq. (11), using a basic formula of Hankel

transform
1

R
= 1√

r 2 + z2
=

∫ ∞

0

e−ξ |z| J0(ξr )dξ, (19)
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we can obtain explicit expressions for the displacement potentials in cylindrical coordinates in the form of semi-infinite integral with respect

to wave number ξ :

Φs
1(r, ϕ, z) = 1

4πμ

∫ ∞

0

{
−1

4
[(2 − γ )(Mrr + Mϕϕ) − 2γ Mzz]J0(ξr ) + sgn(z)Mrz J1(ξr ) + 2 − γ

4
(Mrr − Mzz)J2(ξr )

}
e−ξ |z|dξ (20)

Φs
2(r, ϕ, z) = 1

4πμ

∫ ∞

0

{
−sgn(z)

1

4
[(Mrr + Mϕϕ) − 2Mzz]J0(ξr ) + Mrz J1(ξr ) + sgn(z)

1

4
(Mrr − Mϕϕ)J2(ξr )

}
ξe−ξ |z|dξ (21)

Ψs(r, ϕ, z) = − 1

4πμ

∫ ∞

0

[sgn(z)Mϕz J1(ξr ) + Mrϕ J2(ξr )]e−ξ |z|dξ, (22)

where Jn(ξr ) is the nth order Bessel function and sgn(z) denotes the sign function that takes the value of 1 for z > 0 and −1 for z < 0. It

should be noted that all of these potentials satisfy the Laplace equation except for z = 0.

We rewrite eqs (20)–(22) in the following more concise form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φs
1(r, ϕ, z) = 1

4π

∫ ∞

0

χs
1(z; ξ ) j(r, ϕ; ξ )dξ

Φs
2(r, ϕ, z) = 1

4π

∫ ∞

0

χs
2(z; ξ ) j(r, ϕ; ξ )ξdξ

Ψs(r, ϕ, z) = 1

4π

∫ ∞

0

χ′s(z; ξ ) j′(r, ϕ; ξ )dξ

. (23)

Here, χs
1, χs

2 and χ′s are the z-dependent coefficient vectors defined by

⎧⎪⎪⎨
⎪⎪⎩
χs

1(z; ξ ) = [1 − 4γ 2 + γ − sgn(z) 2 − γ ]e−ξ |z|

χs
2(z; ξ ) = [0 3sgn(z) −1 sgn(z)]e−ξ |z|

χ′s(z; ξ ) = [sgn(z) −1]e−ξ |z|
(24)

and j and j′ are the r- and ϕ-dependent source vectors defined by

j(r, ϕ; ξ ) =

⎡
⎢⎢⎢⎢⎢⎣

m1 J0(ξr )

m2 J0(ξr )

m3 cos ϕ J1(ξr ) + m4sinϕ J1(ξr )

m5 cos 2ϕ J2(ξr ) + m6sin2ϕ J2(ξr )

⎤
⎥⎥⎥⎥⎥⎦ (25)

j′(r, ϕ; ξ ) =
[ −m3sinϕ J1(ξr ) + m4 cos ϕ J1(ξr )

−2m5sin2ϕ J2(ξr ) + 2m6 cos 2ϕ J2(ξr )

]
(26)

with

m1 = M11 + M22 + M33

9K
, m2 = −M11 − M22 + 2M33

12μ
, m3 = − M13

μ
, m4 = − M23

μ
, m5 = M11 − M22

4μ
, m6 = M12

2μ
. (27)

Each component of the source vectors j and j′ represents a horizontal mode solution corresponding to some force system composed of the

elements of moment tensor Mpq. Substituting the expressions of displacement potentials in eq. (23) into eq. (15), we can obtain the explicit

expressions for displacement fields due to a moment tensor in cylindrical coordinates.

2.2 Specific representation of source vectors

There are many ways to decompose a moment tensor into several independent force systems. It is natural to decompose a moment tensor

into two force systems corresponding to isotropic expansion and displacement discontinuity across an internal surface. The displacement

discontinuity vector can be decomposed into the normal and tangential components, which correspond to crack opening and shear faulting,

respectively. Therefore, we can decompose a moment tensor into three independent force systems corresponding to isotropic expansion, crack
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Figure 1. Three basic physical processes represented by a moment tensor: (a) isotropic expansion, (b) shear faulting, and (c) crack opening.

opening and shear faulting. This decomposition is natural and always possible by solving the eigenvalue problems of moment tensor. In this

section we show the explicit expressions of the source vectors j and j′ for isotropic expansion, crack opening and shear faulting.

2.2.1 Isotropic expansion

A fractional volume change Θ = ΔV/V in an infinitesimal sphere with a radius a (Fig. 1a) can be expressed in terms of a moment tensor as

Mpq = 4πa3

3
KΘδpq . (28)

Substituting eq. (28) into eqs (25) and (26) with eq. (27), we obtain the expressions of j and j′ for isotropic expansion as

j(r, ϕ; ξ ) = 4

9
πa3Θ

⎡
⎢⎢⎢⎢⎣

J0(ξr )

0

0

0

⎤
⎥⎥⎥⎥⎦ , j′(r, ϕ; ξ ) =

(
0

0

)
. (29)

2.2.2 Shear faulting and crack opening

A displacement discontinuity �u with a unit direction vector � = (ν 1, ν 2, ν 3) on an infinitesimal fault plane dΣ with a unit normal vector

n = (n1, n2, n3) can be expressed in terms of a moment tensor as

Mpq = ΔudΣ

[
K nkνkδpq + μ

(
n pνq + nqνp − 2

3
nkνkδpq

)]
. (30)

The above expression includes both cases of shear faulting (n·� = 0) and crack opening (n·� = 1). We first consider the case of shear faulting

on an inclined plane with its strike parallel to the x1-axis, a dip angle θ , and a slip angle λ (Fig. 1b). In this case the components of the direction

vector � and the normal vector n are given as

n = (0, sinθ, −cos θ ), ν = (cos λ, −sinλ cos θ, −sinλsinθ ). (31)

Substituting eqs (30) and (31) into eqs (25) and (26) with eq. (27), we obtain the expressions of j and j′ for shear faulting as

j(r, ϕ; ξ ) = ΔudΣ

⎡
⎢⎢⎢⎢⎢⎢⎣

0

1

4
sin2θsinλJ0(ξr )

(cos λ cos θ cos ϕ − sinλ cos 2θsinϕ) J1(ξr )

1

4
(sinλsin2θ cos 2ϕ + 2 cos λsinθsin2ϕ) J2(ξr )

⎤
⎥⎥⎥⎥⎥⎥⎦

(32)

j′(r, ϕ; ξ ) = ΔudΣ

⎡
⎣ − (cos λ cos θsinϕ + sinλ cos 2θ cos ϕ) J1(ξr )

−1

2
(sinλsin2θsin2ϕ − 2 cos λsinθ cos 2ϕ) J2(ξr )

⎤
⎦ . (33)

Note that the first component of the source vector j is always zero for shear faulting. Sato (1971) has obtained the representation of source

vectors equivalent to those in eqs (32) and (33).

In the case of crack opening on a plane with its strike parallel to the x1-axis and a dip angle θ (Fig. 1c), since the direction vector � is

parallel to the normal vector n, we have

n = ν = (0, sinθ, − cos θ ). (34)
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In the same way as in the case of shear faulting, substituting eqs (30) and (34) into eqs (25) and (26) with eq. (27), we obtain the expressions

of j and j′ for crack opening as

j(r, ϕ; ξ ) = ΔudΣ

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

3
J0(ξr )

1

6
(3 cos2 θ − 1)J0(ξr )

sin2θsinϕ J1(ξr )

−1

2
sin2θ cos 2ϕ J2(ξr )

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, j′(r, ϕ; ξ ) = ΔudΣ

[
sin2θ cos ϕ J1(ξr )

sin2θsin2ϕ J2(ξr )

]
. (35)

3 E L A S T I C S O L U T I O N F O R A L AY E R E D H A L F - S PA C E

We consider the elastic medium composed of n−1 parallel layers overlying a half-space as shown in Fig. 2. Here, every layer and interface is

numbered in ascending order from the free surface, and the positive z-axis is taken as directed into the medium. The depth of the jth interface

is denoted by Hj, and the thickness of the jth layer by hj. We use bulk modulus Kj and rigidity μ j , or γ j = (3Kj + μ j )/(3Kj + 4μ j ) and

μ j , to represent the elastic property of the jth layer. A point moment tensor MH (t) is located at (0, 0, d) in the mth layer. Here, we use the

Heaviside step function H (t) to represent an instantaneous source time process at t = 0. Then, in a layer with the source ( j = m), the elastic

displacement field uE (r , ϕ, z, t ; j) can be represented by the sum of a particular solution us(r , ϕ, z − d, t ; j) for an infinite medium with

the source, which is obtained by substituting the displacement potentials in eq. (23) into eq. (15), and the general solution ug(r , ϕ, z, t ; j) for

the layer without sources, which is obtained by superposing mode solutions of the Laplace equation. In a layer without sources ( j 	= m), on

the other hand, the elastic displacement field uE is given by the general solution ug . Thus we can generally represent the elastic displacement

field as

uE (r, ϕ, z, t ; j) = ug(r, ϕ, z, t ; j) + δ jmus(r, ϕ, z − d, t ; m). (36)

3.1 Representation of internal deformation fields

We represent the general solution ug of the jth layer (H j−1 ≤ z ≤ Hj) by using displacement potentials, Φ
g
1 j , Φ

g
2 j and Ψ

g
j , in the same form

as eq. (15):

ug(r, ϕ, z; j) = ∇Φ
g
1 j − γ j (z − Hj−1)∇Φ

g
2 j + (2 − γ j )

⎛
⎜⎝

0

0

Φ
g
2 j

⎞
⎟⎠ + ∇ ×

⎛
⎜⎝

0

0

Ψ
g
j

⎞
⎟⎠ . (37)

General expressions for the displacement potentials are given by the superposition of all the mode solutions of the Laplace equation. From

among all the mode solutions we choose some specific ones corresponding to the horizontal modes in the particular solution to satisfy boundary

z

d

(r, ,z)r
x1

x2

x3

Hm 1

Hm

M pq

ur

uz

u

(1)
0

d

z
(n)

(m)

( j)

H1

h j

Hn 1

Hm

Hm 1

H j

H j 1

(a) (b)

Figure 2. The coordinate system, source geometry, and a layered structure model. Every layer and interface is numbered in ascending order from the free

surface. The direction of the x3-axis in Cartesian coordinates or the z-axis in cylindrical coordinates is taken to be vertically downward. The depth of the jth
interface is denoted by Hj, and the thickness of the jth layer by hj = Hj − Hj−1. The source is located at (0, 0, d) on the z-axis.
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conditions. Thus, by using the same source vectors j and j′ in eqs (25) and (26), we may write the displacement potentials of ug in the following

integral form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φ
g
1 j (r, ϕ, z) = 1

4π

∫ ∞

0

χ
g
1 j (z; ξ ) j(r, ϕ; ξ )dξ

Φ
g
2 j (r, ϕ, z) = 1

4π

∫ ∞

0

χ
g
2 j (z; ξ ) j(r, ϕ; ξ )ξdξ

Ψ
g
j (r, ϕ, z) = 1

4π

∫ ∞

0

χ
′g
j (z; ξ ) j′(r, ϕ; ξ )dξ

(38)

with the z-dependent coefficient vectors χ
g
1 j , χ

g
2 j and χ

′g
j defined by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
χ

g
1 j (z; ξ ) = (1 − δ jn)

(
A+

1 j A+
2 j A+

3 j A+
4 j

)
eξ (z−H j−1) +

(
A−

1 j A−
2 j A−

3 j A−
4 j

)
e−ξ (z−H j−1)

χ
g
2 j (z; ξ ) = (1 − δ jn)

(
B+

1 j B+
2 j B+

3 j B+
4 j

)
eξ (z−H j−1) +

(
B−

1 j B−
2 j B−

3 j B−
4 j

)
e−ξ (z−H j−1)

χ
′g
j (z; ξ ) = (1 − δ jn)

(
C+

1 j C+
2 j

)
eξ (z−H j−1) +

(
C−

1 j C−
2 j

)
e−ξ (z−H j−1)

. (39)

Here, A±
k j (k = 1, 2, 3, 4), B±

k j (k = 1, 2, 3, 4) and C±
k j (k = 1, 2) are the ξ -dependent potential coefficients to be determined from boundary

conditions. It should be noted that the terms exponentially increasing with depth z must be removed from eq. (39) for the substratum ( j = n),

because every displacement and stress components do not diverge at z→∞ from causality.

Substituting eq. (23) and (38) into eq. (15) and (37), respectively, we obtain expressions for us
r (ϕ,z)(r , ϕ, z, t ; m) and ug

r (ϕ,z)(r , ϕ, z, t ; j)

in the same integral form. We combine them by eq. (36) to obtain the formal expressions for elastic displacement fields uE
r (ϕ,z)(r , ϕ, z, t ; j)

due to a moment tensor MH (t) at a point (0, 0, d) in the mth layer:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uE
r (r, ϕ, z, t ; j) = H (t)

4π

∫ ∞

0

[
yE

1 (z; ξ ; j)
∂

∂r
j(r, ϕ; ξ ) + y′ E

1 (z; ξ ; j)
1

r

∂

∂ϕ
j′(r, ϕ; ξ )

]
dξ

uE
ϕ (r, ϕ, z, t ; j) = H (t)

4π

∫ ∞

0

[
yE

1 (z; ξ ; j)
1

r

∂

∂ϕ
j(r, ϕ; ξ ) − y′ E

1 (z; ξ ; j)
∂

∂r
j′(r, ϕ; ξ )

]
dξ

uE
z (r, ϕ, z, t ; j) = H (t)

4π

∫ ∞

0

yE
2 (z; ξ ; j)j(r, ϕ; ξ )ξdξ

. (40)

The corresponding expressions for stress components σ E
zr (ϕ,z)(r , ϕ, z, t ; j) are calculated from the displacement potentials in eqs (23) and (38)

by the definition of stress components in cylindrical coordinates as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ E
zr (r, ϕ, z, t ; j) = μ j H (t)

4π

∫ ∞

0

[
2yE

3 (z; ξ ; j)
∂

∂r
j(r, ϕ; ξ ) + y′ E

2 (z; ξ ; j)
1

r

∂

∂ϕ
j′(r, ϕ; ξ )

]
ξdξ

σ E
zϕ(r, ϕ, z, t ; j) = μ j H (t)

4π

∫ ∞

0

[
2yE

3 (z; ξ ; j)
1

r

∂

∂ϕ
j(r, ϕ; ξ ) − y′ E

2 (z; ξ ; j)
∂

∂r
j′(r, ϕ; ξ )

]
ξdξ

σ E
zz (r, ϕ, z, t ; j) = μ j H (t)

4π

∫ ∞

0

2yE
4 (z; ξ ; j)j(r, ϕ; ξ )ξ 2dξ

. (41)

Here, for the source vectors j(r , ϕ; ξ ) and j′(r , ϕ; ξ ), we have already obtained the definite expressions in eqs (25) and (26). Thus, our problem

is to determine the z-dependent deformation vectors, yE
k (k = 1, 2, 3, 4) and y′E

k (k = 1, 2) from boundary conditions at the Earth’s surface and

layer interfaces.

3.2 Deformation matrices and boundary conditions

We define the 4×4 and 2×2 deformation matrices YE and Y′ E composed of the deformation vectors yE
k (k = 1, 2, 3, 4) and y′ E

k (k = 1, 2),

respectively, as

YE (z; j) =

⎡
⎢⎢⎢⎢⎣

yE
1 (z; j)

yE
2 (z; j)

yE
3 (z; j)

yE
4 (z; j)

⎤
⎥⎥⎥⎥⎦ , Y′ E

(z; j) =
[

y′ E
1 (z; j)

y′ E
2 (z; j)

]
. (42)

Hereafter we omit the ξ - and t-dependence in notation for simplicity. The formal expressions of the deformation matrices, which are composed

of the deformation matrices for the particular solution, Ysand Y′s , and those for the general solution, Ygand Y′g , are given as follows:{
YE (z; j) = Yg(z; j) + δ jm exp(−|z − d| ξ )Ys(z − d; m)

Y′ E (z; j) = Y′g(z; j) + δ jm exp(−|z − d| ξ )Y′s(z − d; m)
, (43)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ys(z; m) =

⎡
⎢⎢⎢⎢⎣

1 − 4γm 2 + γm(1 − 3|z|ξ ) −sgn(z) + γm zξ 2 − γm(1 + |z|ξ )

sgn(z)(4γm − 1) 4sgn(z)(1 − γm) + 3γm zξ −1 + γm(1 − |z|ξ ) γm zξ

sgn(z)(4γm − 1) sgn(z)(1 − 4γm) + 3γm zξ γm(1 − |z|ξ ) −sgn(z) + γm zξ

1 − 4γm −1 + γm(1 − 3|z|ξ ) γm zξ 1 − γm(1 + |z|ξ )

⎤
⎥⎥⎥⎥⎦

Y′s(z; m) =
[

sgn(z) −1

−1 sgn(z)

]
(44)

and

Yg(z; j) = E j (z − Hj−1)A j , Y′g(z; j) = E′
j (z − Hj−1)A′

j (45)

with

A j(	=n) =

⎛
⎜⎜⎜⎜⎝

A+
1 j + A−

1 j A+
2 j + A−

2 j A+
3 j + A−

3 j A+
4 j + A−

4 j

B+
1 j + B−

1 j B+
2 j + B−

2 j B+
3 j + B−

3 j B+
4 j + B−

4 j

A+
1 j − A−

1 j A+
2 j − A−

2 j A+
3 j − A−

3 j A+
4 j − A−

4 j

B+
1 j − B−

1 j B+
2 j − B−

2 j B+
3 j − B−

3 j B+
4 j − B−

4 j

⎞
⎟⎟⎟⎟⎠ , A′

j(	=n) =
(

C+
1 j + C−

1 j C+
2 j + C−

2 j

C+
1 j − C−

1 j C+
2 j − C−

2 j

)
, (46)

An =

⎛
⎜⎜⎜⎜⎝

an

bn

−an

−bn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

A−
1n A−

2n A−
3n A−

4n

B−
1n B−

2n B−
3n B−

4n

−A−
1n −A−

2n −A−
3n −A−

4n

−B−
1n −B−

2n −B−
3n −B−

4n

⎞
⎟⎟⎟⎟⎠ , A′

n =
(

cn

−cn

)
=

(
C−

1n C−
2n

−C−
1n −C−

2n

)
. (47)

Here, E j and E′
j are the purely structure-dependent matrices (independent of source properties), whose explicit expressions are given in

Appendix A.

The deformation matrices defined in eq. (43) must satisfy the stress-free condition, including the gravitational effects associated with

surface uplift and subsidence (McConnell 1965; Matsu’ura & Sato 1989), at the Earth’s surface (z = 0):

σzr (ϕ)(r, ϕ, 0; 1) = 0, σzz(r, ϕ, 0; 1) − ρ1guz(r, ϕ, 0; 1) = 0, (48)

where ρ 1 is the density of the surface layer, and g is the acceleration of gravity at the Earth’s surface. From eqs (40) and (41) the stress-free

condition can be written in terms of the deformation vectors as

yE
3 (0; 1) = 0, y′ E

2 (0; 1) = 0, 2μ1ξyE
4 (0; 1) − ρ1gyE

2 (0; 1) = 0, (49)

or in terms of the deformation matrices as

YE (0; 1) = GY0, Y′ E
(0; 1) = Y′0 (50)

with

Y0 =

⎛
⎜⎜⎜⎜⎝

y0
1

y0
2

0

0

⎞
⎟⎟⎟⎟⎠ , Y′0 =

(
y′0

1

0

)
. (51)

Here, G is a purely structure-dependent matrix, whose explicit expression is given in Appendix A. At each layer interface (z = Hj) every

components of the displacement and stress vectors must satisfy the condition of continuity,{
ur (ϕ,z)(r, ϕ, Hj+; j + 1) = ur (ϕ,z)(r, ϕ, Hj−; j)

σzr (ϕ,z)(r, ϕ, Hj+; j + 1) = σzr (ϕ,z)(r, ϕ, Hj−; j)
, (52)

which can be written in terms of the deformation matrices as

YE (H+
j ; j + 1) = D j Y

E (H−
j ; j), Y′ E

(H+
j ; j + 1) = D′

j Y
′ E

(H−
j ; j). (53)

Here, D j and D′
j are purely structure-dependent matrices, whose explicit expressions are given in Appendix A. In the above expressions, we

ignored the gravitational effects associated with vertical displacements at the layer interfaces, because the density difference between the upper

and lower layers is small in comparison with that at the Earth’s surface. If we want to include the gravitational effects at the layer interfaces,

the matrices D j and D′
j in eq. (53) should be slightly modified in a similar way to the case of the Earth’s surface (Iwasaki & Matsu’ura 1982).

In addition, using the down–going expressions of the generalized propagator matrices defined by Fukahata & Matsu’ura (2005),

F j (z) ≡ E j (z)E−1
j (0), F′

j (z) ≡ E′
j (z)E′−1

j (0) = E′
j (z), (54)

we can relate the deformation matrices at the top (z = H+
j−1) and the bottom (z = H−

j ) of the jth layer without sources ( j 	= m, n) as

YE
(
H−

j ; j 	= m
) = F j (h j )Y

E
(
H+

j−1; j
)
, Y′ E(

H−
j ; j 	= m

) = F′
j (h j )Y

′ E(
H+

j−1; j
)
. (55)
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Here, F j (z) and F′
j (z) are purely structure-dependent matrices. The explicit expression for F j (z) is given in Appendix A together with E j (0)

and its inverse E−1
j (0). For the source layer ( j = m), taking the direct source effects into account, we obtain the following relations:{

YE (H−
m ; m) = Fm(hm)YE (H+

m−1; m) − Fm(Hm − d)Δm

Y′ E (H−
m ; m) = F′

m(hm)Y′ E (H+
m−1; m) − F′

m(Hm − d)Δ′
m

(56)

with

Δm = Ys(0−; m) − Ys(0+; m), Δ′
m = Y′s(0−; m) − Y′s(0+; m). (57)

The explicit expressions for Δm and Δ′
m are given by

Δm = 2

⎛
⎜⎜⎜⎜⎝

0 0 1 0

1 − 4γm −4 + 4γm 0 0

1 − 4γm −1 + 4γm 0 1

0 0 0 0

⎞
⎟⎟⎟⎟⎠ , Δ′

m = −2

(
1 0

0 1

)
. (58)

For the substratum ( j = n), from eqs (43) and (45), we obtain{
YE (H+

n−1; n) = En(0)An + δmn exp(−|Hn−1 − d| ξ )Ys(Hn−1 − d; n)

Y′ E (H+
n−1; n) = A′

n + δmn exp(−|Hn−1 − d| ξ )Y′s(Hn−1 − d; n)
. (59)

By using the relations (55), (56) and (59) and the boundary conditions (50) and (53), the deformation matrices can be connected from

the top to the bottom of the layered half-space in the down–going way as

An = PY0 − Qm, A′
n = P′Y′0 − Q′m (60)

with

P = E−1
n (0)

n−1∏
j=1

[Dn− j Fn− j (hn− j )]G, P′ =
n−1∏
j=1

[D′
n− j F

′
n− j (hn− j )] (61)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Qm(	=n) = E−1
n (0)

n−m−1∏
j=1

[Dn− j Fn− j (hn− j )]DmFm(Hm − d)Δm

Qm(	=n) =
n−m−1∏

j=1

[D′
n− j F

′
n− j (hn− j )]D

′
mF′

m(Hm − d)Δ′
m

(62)

and{
Qm(=n) = e−(d−Hn−1)ξ E−1

n (0)Ys(Hn−1 − d; n)

Q′m(=n) = e−(d−Hn−1)ξ Y′s(Hn−1 − d; n)
. (63)

The matrix equations (60)–(63) are formally the same as those for shear faulting in Fukahata & Matsu’ura (2005).

If we take z = Hj as the reference depth in the representation of displacement potentials Φ
g
1 j , Φ

g
2 j and Ψ

g
j instead of z = H j−1, we obtain

the up–going expressions of the generalized propagator matrices:

F̄ j (z) ≡ E j (−z)E−1
j (0), F̄

′
j (z) ≡ E′

j (−z)E′−1
j (0) = E′

j (−z). (64)

The upgoing propagator matrices F̄
′
j (z) and F̄

′
j (z) are related with the down–going propagator matrices F j (z) and F′

j (z) in eq. (54), respectively,

as

F̄ j (z) = F j (−z) = F−1
j (z), F̄′

j (z) = F′
j (−z) = F′−1

j (z). (65)

Using the up-going propagator matrices, we can connect the deformation matrices from the bottom to the top in the up–going way, and obtain

the matrix equations parallel to eq. (60):

Y0 = P̄An + Q̄
m
, Y′0 = P̄′A

′
n + Q̄′m (66)

with

P̄ = G−1
n−1∏
j=1

[
F j (−h j )D

−1
j

]
En(0), P̄′ =

n−1∏
j=1

[
F′

j (−h j )D
′−1
j

]
(67)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q̄
m(	=n) = G−1

m−1∏
j=1

[
F j (−h j )D

−1
j

]
Fm(Hm−1 − d)Δm

Q̄′m(	=n) =
m−1∏
j=1

[
F′

j (−h j )D
′−1
j

]
F′

m(Hm−1 − d)Δ′
m

(68)
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and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q̄
n(=m) = e−(d−Hn−1)ξ G−1

n−1∏
j=1

[
F j (−h j )D

−1
j

]
Ys(Hn−1 − d; n)

Q̄′n(=m) = e−(d−Hn−1)ξ
n−1∏
j=1

[
F′

j (−h j )D
′−1
j

]
Y′s(Hn−1 − d; n)

. (69)

The matrix equations (66)–(69) are formally the same as those for shear faulting in Fukahata & Matsu’ura (2005).

3.3 Internal deformation fields

As shown in Fukahata & Matsu’ura (2005), we can solve eq. (60) for the deformation vectors at the Earth’s surface (y0
1, y0

2 and y′0
1 ) by

eliminating the potential coefficients in the substratum (an , bn and cn) as(
y0

1

y0
2

)
= 1

δ

[
(P22 + P42)

(
qm

1 + qm
3

) − (P12 + P32)
(
qm

2 + qm
4

)
−(P21 + P41)

(
qm

1 + qm
3

) + (P11 + P31)
(
qm

2 + qm
4

)
]

, y′0
1 = 1

δ′
(
q′m

1 + q′m
2

)
(70)

with

δ = (P11 + P31)(P22 + P42) − (P12 + P32)(P21 + P41), δ′ = P ′
11 + P ′

21. (71)

On the other hand, eliminating the deformation vectors y0
1, y0

2 and y′0
1 in eq. (66), we obtain the potential coefficients an , bn and cn as(

an

bn

)
= 1

δ̄

[
−(P̄42 − P̄44)q̄m

3 + (P̄32 − P̄34)q̄m
4

(P̄41 − P̄43)q̄m
3 − (P̄31 − P̄33)q̄m

4

]
, cn = − 1

δ̄′ q̄′m
2 (72)

with

δ̄ = (P̄31 − P̄33)(P̄42 − P̄44) − (P̄32 − P̄34)(P̄41 − P̄43), δ̄′ = P̄ ′
21 − P̄ ′

22. (73)

Here, P (′)
i j and P̄ (′)

i j are the ij-components of P(′) and P̄
(′)

, respectively, and q(′)
i and q̄(′)

i are the ith rows of Q(′) and Q̄
(′)

, respectively.

We have derived two different types of solutions Y(′)0 in eq. (70) and A(′)
n in eq. (72). Using either type of solutions, we can obtain

the expressions for the deformation matrices YE and Y′ E at any depth, but they are not always numerically stable, because the ξ -dependent

exponential factors in the deformation matrices diverge at ξ→∞ in some cases (Fukahata & Matsu’ura 2005). In the substratum (H n−1 ≤ z)

we choose the second type of solutions to obtain the proper (numerically stable) expressions:{
YE (z; n) = En(z − Hn−1)An + δmn exp(−|z − d| ξ )Ys(z − d; n)

Y′ E (z; n) = E′
n(z − Hn−1)A′

n + δmn exp(−|z − d| ξ )Y′s(z − d; n)
. (74)

In the layers overlying the substratum, if the computation point is shallower than the source depth (0 ≤ z < d), we choose the first type of

solutions to obtain the proper expressions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

YE (z; j) = F j (z − Hj−1)
j−1∏
k=1

[D j−kF j−k(h j−k)]GY0

Y′ E (z; j) = F′
j (z − Hj−1)

j−1∏
k=1

[D′
j−kF′

j−k(h j−k)]Y′0
, (75)

and if the computation point is deeper than the source depth (d < z < H n−1), we choose the second type of solutions to obtain the proper

expressions:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

YE (z; j) = F j (z − Hj )D
−1
j

n−1∏
k= j+1

[
Fk(−hk)D−1

k

]
En(0)An

Y′ E (z; j) = F′
j (z − Hj )D

′−1
j

n−1∏
k= j+1

[
F′

k(−hk)D′−1
k

]
A′

n

. (76)

Substituting the solutions Y0 and Y′0 in eq. (70) or An and A′
n in eq. (72) into eqs (74)–(76), we can finally obtain the definite expressions

for YE and Y′ E in the following concise forms:{
YE (z; j) = exp(−qξ )S jm(z) + δ jnδmn exp(−|z − d| ξ )Ys(z − d; n)

Y′ E (z; j) = exp(−qξ )S′
jm(z) + δ jnδmn exp(−|z − d| ξ )Y′s(z − d; n)

(77)

with

q =
{

|z − d| ( j 	= n or m 	= n)

z + d − 2Hn−1 ( j = m = n)
. (78)

The explicit expressions for Sjm and S′
jm are given in the appendix of Fukahata & Matsu’ura (2006), where the source-dependent matrices

Ys and Δ in Qm and Q̄
m

should be replaced with Ys in eq. (44) and Δm in eq. (58), respectively. Furthermore, it should be noted that the
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generalized propagator matrices F(z), F′(z) and E(z) in Fukahata & Matsu’ura (2006) are different from those in Fukahata & Matsu’ura (2005)

and the present paper but only in the ξ -dependent exponential factor exp(|z|ξ ).

4 V I S C O E L A S T I C S O L U T I O N F O R A L AY E R E D H A L F - S PA C E

We now consider the case where the lth layer of the layered half-space is viscoelastic. The rheological property of the viscoelastic layer is

assumed to be Maxwell in shear and elastic in bulk:

σkk = 3Klεkk,
∂

∂t
σ ′

i j + μl

ηl
σ ′

i j = 2μl
∂

∂t
ε′

i j , (79)

where ηl denotes the viscosity of the lth layer. Performing the Laplace transformation of eq. (79), we obtain a relation between the Laplace

transforms of stress and strain tensors, which is formally identical with the constitutive equation of elastic media in eq. (1):

σ̃kk = 3Kl ε̃kk, σ̃ ′
i j = 2μ̂l (s)ε̃′

i j . (80)

Here, s is the Laplace transform variable, the tilde denotes the Laplace transform of the corresponding physical quantity, and μ̂l (s) is the

Laplace operator defined by

μ̂l (s) = μl s

s + 1/τl
with τl = ηl

μl
. (81)

The Laplace operator γ̂l (s) corresponding to γi = (3Ki + μi )/(3Ki + 4μi ), which is used in the description of elastic solution, is obtained

from eq. (81) as

γ̂l (s) = γl s + 1/υl

s + 1/υl
with υl = 3τl

4γl − 1
. (82)

Here, it should be noted that the parameters τl and υl in eqs (81) and (82) have the dimension of time.

Then, applying the correspondence principle of linear viscoelasticity (Lee 1955; Radok 1957), we can directly obtain viscoelastic solution

ũV
r (ϕ,z) in the s-domain from the associated elastic solution uE

r (ϕ,z) by replacing μl and γl with μ̂l (s) and γ̂l (s) and the source time function H (t)
with its Laplace transform 1/s. Hereafter, for convenience, we represent the μl - and γl -dependence of the deformation matrices YE and Y′ E

explicitly. Since the source vectors j and j′ do not contain any elastic modulus, the viscoelastic solution ũV
r (ϕ,z) in the s-domain can be written

as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ũV
r (r, ϕ, z, s; j) = 1

4π

∫ ∞

0

[
ỹV

1 (z, s; ξ ; j)
∂

∂r
j(r, ϕ; ξ ) + ỹ′V

1 (z, s; ξ ; j)
1

r

∂

∂ϕ
j′(r, ϕ; ξ )

]
dξ

ũV
ϕ (r, ϕ, z, s; j) = 1

4π

∫ ∞

0

[
ỹV

1 (z, s; ξ ; j)
1

r

∂

∂ϕ
j(r, ϕ; ξ ) − ỹ′V

1 (z, s; ξ ; j)
∂

∂r
j′(r, ϕ; ξ )

]
dξ

ũV
z (r, ϕ, z, s; j) = 1

4π

∫ ∞

0

ỹV
2 (z, s; ξ ; j)j(r, ϕ; ξ )ξdξ

(83)

with

ỹV
1(2)(z, s; ξ ; j) = 1

s
yE

1(2)(z; ξ ; j ; μ̂l , γ̂l ), ỹ′V
1 (z, s; ξ ; j) = 1

s
y′E

1 (z; ξ ; j ; μ̂l ). (84)

Here, the s-dependent deformation vectors yE
k (z; j ; μ̂l ; γ̂l ) and y′E

k (z; j ; μ̂l ) are the kth rows of the s-dependent deformation matrices

YE (z; j ; μ̂l , γ̂l ) and Y′E (z; j ; μ̂l ), respectively, which are directly obtained from YE and Y′E in eqs (74)–(76) by replacing μl and γl with μ̂l (s)

and γ̂l (s): that is, if the substratum is viscoelastic (l = n),{
YE (z; j ; μ̂n, γ̂n) = exp(−qξ )S jm(z; μ̂n, γ̂n) + δ jnδmn exp(−|z − d| ξ )Ys(z − d; n; γ̂n)

Y′ E (z; j ; μ̂n) = exp(−qξ )S′
jm(z; μ̂n) + δ jnδmn exp(−|z − d| ξ )Y′s(z − d; n)

, (85)

and otherwise{
YE (z; j ; μ̂l , γ̂l ) = exp(−qξ )S jm(z; μ̂l , γ̂l ) + δ jnδmn exp(−|z − d| ξ )Ys(z − d; n; γn)

Y′ E (z; j ; μ̂l ) = exp(−qξ )S′
jm(z; μ̂l ) + δ jnδmn exp(−|z − d| ξ )Y′s(z − d; n)

. (86)

From eqs (44) and (82) we can see that the matrix Ys(z − d; n; γ̂n) in eq. (85) has the form of a rational function of first-degree polynomials

in s:

Ys(z − d; n; γ̂n) = 1

s + 1/υn

[
sYs(z − d; n; γn) + 1

υn
Ys(z − d; n; γn = 1)

]
. (87)

The matrix S(′)
jm, defined by the products of plural matrices, contains the γl -dependent matrices [Δm (if m = l), En(0) and E−1

n (0) (if

n = l), and Fl ] and the μl -dependent matrices [G and G−1 (if l = 1), D(′)
l

, D(′)−1
l

, D(′)−1
l−1 and D(′)

l−1]. For the γl -dependent matrices, replacing

γl with γ̂l (s), we obtain the corresponding s-dependent matrices in the form of

B(γ̂l ) = 1

s + 1/υl

[
sB(γl ) + 1

υl
B(γl = 1)

]
. (88)
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For the μl -dependent matrices, replacing μl with μ̂l (s), we obtain the corresponding s-dependent matrices in the form of

B(μ̂l ) = 1

s + 1/τl

[
sB(μl ) + 1

τl
B(μl = 0)

]
. (89)

When μl appears in the form of 1/μl , the limit of 1/μl at μl→0 diverses. In this case, instead of eq. (89), we use the following formula to

obtain the corresponding s-dependent matrices:

B(μ̂l ) = 1

s

{
sB(μl ) + 1

2τl
[B(μl ) − B(−μl )]

}
. (90)

Therefore, as shown in Fukahata & Matsu’ura (2006), the s-dependent deformation matrices YE (z; j ; μ̂l , γ̂l ) and Y′E (z; j ; μ̂l ) can be expressed

in the form of a rational function of s as

YE (z; j ; μ̂l , γ̂l ) =
∑M

i=0 Ai si∑M
i=0 bi si

, Y′ E
(z; j ; μ̂l ) =

∑M ′
i=0 A′

i s
i∑M ′

i=0 b′
i s

i
. (91)

Then, the s-dependent deformation vectors yE
k (z; j ; μ̂l , γ̂l ) and y′E

k (z; j ; μ̂l ), which are the kth rows of YE (z; j ; μ̂l , γ̂l ) and Y′E (z; j ; μ̂l ), can

also be expressed in the form of a rational function:

yE
k (z; j ; μ̂l , γ̂l ) =

∑M
i=0 aki si∑M
i=0 bi si

, y′ E
k (z; j ; μ̂l ) =

∑M ′
i=0 a′

ki s
i∑M ′

i=0 b′
i s

i
(92)

with

ak M

bM
= yE

k (z; j ; μl , γl ),
a′

k M ′

b′
M ′

= y′E
k (z; j ; μl ). (93)

Here, it should be noted that the degrees M and M ′ of the polynomials for the deformation vectors depend on the case. For example, when

the source is located in one of the elastic layers (m 	=l) overlying the viscoelastic substratum (l = n), the degrees of polynomials are M = 3

and M ′ = 1. When the viscoelastic layer without sources intervenes between elastic layers (l 	= m, n), the degrees of polynomials are M = 6

and M ′ = 2 (Matsu’ura et al. 1981). If the number of viscoelastic layers is more than one, this procedure becomes more complicated (Sato &

Matsu’ura 1993). General treatment in such a case is given in Fukahata & Matsu’ura (2006).

Given the explicit expressions for the s-dependent deformation vectors, yE
k (z; j ; μ̂l , γ̂l ) and y′E

k (z; j ; μ̂l ) in the form of rational functions,

we can obtain the viscoelastic solution in the time domain by using the algorithm developed by Matsu’ura et al. (1981) as follows. First, with

division algorithm and partial fraction resolution, we rewrite ỹV
k (z, s; ξ ; j) and ỹ′V

k (z, s; ξ ; j) in eq. (84) as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ỹV
k (z, s; ξ ; j) = 1

s
yE

k (z; ξ ; j ; μl , γl ) −
M∑

i=1

vki (ξ )

[
1

s
− 1

s − ςi (ξ )

]

ỹ′V
k (z, s; ξ ; j) = 1

s
y′ E

k (z; ξ ; j ; μl ) −
M ′∑

i=1

v′
ki (ξ )

[
1

s
− 1

s − ς ′
i (ξ )

] (94)

with⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vki (ξ ) = 1

bM (ξ )ςi (ξ )

M∏
j=1( j 	=i)

1

ςi (ξ ) − ς j (ξ )

M∑
j=0

ak j (ξ )ς
j

i (ξ )

v′
ki (ξ ) = 1

b′
M ′ (ξ )ς ′

i (ξ )

M ′∏
j=1( j 	=i)

1

ς ′
i (ξ ) − ς ′

j (ξ )

M ′∑
j=0

a′
k j (ξ )ς

′ j
i (ξ )

, (95)

where ς i (ξ ) and ς ′
i (ξ ) denote the roots of algebraic equations

∑M
i=0 bi (ξ )si = 0 and

∑M ′
i=0 b′

i (ξ )si = 0, respectively, which are always

real-negative. Next, performing the inverse Laplace transformation of eq. (94), we obtain the expressions for the deformation vectors in the

time domain as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yV
k (z, t ; ξ ; j) = H (t)yE

k (z; ξ ; j ; μl , γl ) − H (t)
M∑

i=1

vki (ξ )
[
1 − eςi (ξ )t

]

y′V
k (z, t ; ξ ; j) = H (t)y′ E

k (z; ξ ; j ; μl ) − H (t)
M ′∑

i=1

v′
ki (ξ )

[
1 − eς ′

i (ξ )t
] . (96)

Here, the first terms on the right-hand side of the above equations represent the instantaneous elastic deformation, and the second terms the

transient deformation due to viscoelastic stress relaxation. Finally, replacing ỹV
k (z, s; ξ ; j) and ỹ′V

k (z, s; ξ ; j) in eq. (83) with yV
k (z, t ; ξ ; j) and

y′V
k (z, t ; ξ ; j) in eq. (96), respectively, we obtain the expressions for viscoelastic displacements in the time domain:

uV
r (ϕ,z)(r, ϕ, z, t ; j) = uE

r (ϕ,z)(r, ϕ, z, t ; j) + uT
r (ϕ,z)(r, ϕ, z, t ; j), (97)

where uE
r (ϕ,z) are the instantaneous elastic responses obtained in Section 3, and uT

r (ϕ,z) are the transient responses due to viscoelastic

stress relaxation, represented by the superposition of exponentially decaying modes with the ξ -dependent relaxation times of 1/|ς i (ξ )| or
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1/|ς ′
i (ξ )|:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uT
r (r, ϕ, z, t ; j) = − H (t)

4π

[
M∑

i=1

∫ ∞

0

v1i (ξ )
∂

∂r
j(r, ϕ; ξ )Ti (t ; ξ )dξ +

M ′∑
i=1

∫ ∞

0

v′
1i (ξ )

1

r

∂

∂ϕ
j′(r, ϕ; ξ )T ′

i (t ; ξ )dξ

]

uT
ϕ (r, ϕ, z, t ; j) = − H (t)

4π

[
M∑

i=1

∫ ∞

0

v1i (ξ )
1

r

∂

∂ϕ
j(r, ϕ; ξ )Ti (t ; ξ )dξ +

M ′∑
i=1

∫ ∞

0

v′
1i (ξ )

∂

∂r
j′(r, ϕ; ξ )T ′

i (t ; ξ )dξ

]

uT
z (r, ϕ, z, t ; j) = − H (t)

4π

M∑
i=1

∫ ∞

0

v2i (ξ )j(r, ϕ; ξ )Ti (t ; ξ )ξdξ

(98)

with

Ti (t ; ξ ) = 1 − exp [ςi (ξ )t] , T ′
i (t ; ξ ) = 1 − exp[ς ′

i (ξ )t]. (99)

5 N U M E R I C A L E X A M P L E S

In the previous sections we derived the expressions for the quasi-static internal displacement fields due to a moment tensor in an elas-

tic/viscoelastic multilayered half-space under gravity. In order to obtain the displacement fields due to a finite-dimensional source we nu-

merically integrate the point source solutions over the source region. In the present section, as numerical examples, we show the quasi-static

internal displacement fields associated with dyke intrusion, episodic segmental ridge opening and steady plate divergence in the case of an

elastic–viscoelastic two-layered half-space. The values of structural parameters used for computation are given in Table 1. The coordinate

system and crack geometry are shown in Fig. 3, where the rectangle represents a vertical tensile crack with length L and width W . We also

demonstrate the usefulness of the source representation with moment tensor through the numerical simulation of deformation cycles associated

with the periodic occurrence of interplate strike-slip earthquakes in a ridge-transform fault system. Further numerical examples for shear

faulting are given in Fukahata & Matsu’ura (2006).

At the moment of crack opening or shear faulting, the step-response of the composite system is completely elastic. As time passes,

deviatoric stress in the viscoelastic substratum gradually relaxes. Then, after the completion of the viscoelastic stress relaxation, a certain

amount of permanent displacements remains. At the final stage the elastic–viscoelastic composite system behaves just like an elastic plate

floating on water. In the following numerical examples we show how the patterns of displacement fields change with time and depend on the

source extent.

Table 1. The structural parameters of the elastic–viscoelastic two-layered model used for computation

No. Thickness Vp (km s−1) Vs (km s−1) ρ (kg m−3) η (Pa s)

1 h1 6.0 3.5 3.0 × 103 ∞
2 ∞ 7.0 4.0 3.3 × 103 1 × 1019

z

x

y

O

H
W

L

Figure 3. The coordinate system and crack geometry in numerical computation. The rectangle represents a vertical tensile crack with length L and width W
in the elastic surface layer overlying a viscoelastic half-space.

5.1 Dyke intrusion

First, we consider the sudden opening of a 10-km-long vertical crack embedded in a 20-km-thick elastic surface layer with different depths to

the top. The bottom of the crack reaches down to the elastic–viscoelastic layer interface. The depth to the crack top is taken to be 15, 10, 5 and
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Figure 4. Temporal change of internal displacement fields due to the sudden opening of a 10-km-long vertical crack embedded in the 20-km-thick elastic

surface layer with different depths to the top. The vertical cross-sections of the internal displacement fields at the centre of the 10-km-long crack are shown in

the cases of (a) W = 5 km, (b) W = 10 km, (c) W = 15 km and (d) W = 20 km. The double solid line represents the vertical section of the crack. The values

of structural parameters used for computation are given in Table 1.

0 km, which correspond to the cases (a), (b), (c) and (d) in Fig. 4, respectively. This numerical example may be compared to dyke intrusion.

In each case we show the vertical cross-sections of internal displacement fields at t = 0, 10, 100 and 1000 yr after the crack opening. In either

case of (a), (b) and (c) where the crack is buried under the Earth’s surface, we can observe divergent horizontal displacements due to crack

opening at the early stage. As time passes, the region surrounding the crack gradually subsides because of the viscoelastic stress relaxation in

the substratum. This deformation pattern can be interpreted as the downward bending of the elastic plate by crack opening at the bottom. In the

case (d) where the top of the crack reaches to the Earth’s surface, the displacement fields show essentially different patterns from the previous

three cases. At the early stage we can observe the broad uplift of the Earth’s surface in addition to the divergent horizontal displacements. At

the latter stage, the uplift pattern holds in the upper half of the elastic surface layer, but gradually changes to subsidence in the lower half as

stress relaxation proceeds in the viscoelastic substratum. Then, the deformation pattern becomes nearly symmetric with respect to the mean

depth of the elastic surface layer.

5.2 Episodic segmental ridge opening

Second, we consider the sudden opening of a 100-km-long vertical crack that cuts through the 20-km-thick elastic surface layer overlying

a viscoelastic substratum. This case may be compared to episodic segmental ridge opening, observed in Iceland for example. In Fig. 5, we

show the patterns of surface horizontal displacement fields (top panel) and the vertical cross-sections of internal displacement fields (bottom

panel) at the time t = 0, 10, 100 and 1000 yr after the crack opening. From the patterns of surface horizontal displacement fields we can

observe that the deformation area gradually expands in the direction perpendicular to the crack strike with time. Such diffusive crustal motion
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Figure 4. (Continued.)

has been observed after the episodic segmental ridge opening in Iceland (Foulger et al. 1992). From the vertical cross-sections of internal

displacement fields we can observe the broad uplift of the Earth’s surface at the early stage. As time passes, while the divergent horizontal

displacements remain, the upward displacements in the elastic surface layer gradually disappear because of the viscoelastic stress relaxation

in the substratum.

5.3 Steady plate divergence

Third, we consider the sudden opening of an infinitely long crack that divides the elastic surface layer into two plates. Here, the thickness of

the elastic surface layer h1 is taken to be 10 km. The values of the other structural parameters are the same as those in the previous cases.

This case may be compared to steady plate divergence, observed in mid-ocean ridges, as explained later. For the computation of displacement

fields due to an infinitely long crack, we use the solution for a line source, which is obtained by integrating the solution for a point source

derived in the previous section along the x-axis (Sato & Matsu’ura 1993; Fukahata & Matsu’ura 2005) as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uL
x (y, z, t ; j) = H (t)

4π

∫ ∞

0

y′V
1 (z, t ; ξ ; j) l′x (y; ξ )dξ

uL
y (y, z, t ; j) = H (t)

4π

∫ ∞

0

yV
1 (z, t ; ξ ; j) ly(y; ξ )dξ

uL
z (y, z, t ; j) = H (t)

4π

∫ ∞

0

yV
2 (z, t ; ξ ; j) lz(y; ξ )dξ

(100)
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Figure 5. Temporal change of the surface and internal displacement fields due to the sudden opening of a 100-km-long vertical crack that cuts through the

20-km-thick elastic surface layer overlying the viscoelastic substratum. The horizontal displacement fields at the surface and the vertical cross-section of internal

displacement fields at the centre of the 100-km-long crack are shown at the top and the bottom of each diagram, respectively. The double solid lines represent

the horizontal and vertical sections of the crack. The values of structural parameters used for computation are given in Table 1.

with

l′x (y; ξ ) = −2

(
m3 cos ξ y

2m6sinξ y

)
, ly(y; ξ ) = −2

⎛
⎜⎜⎜⎜⎝

m1sinξ y

m2sinξ y

−m4 cos ξ y

m5sinξ y

⎞
⎟⎟⎟⎟⎠ , lz(y; ξ ) = 2

⎛
⎜⎜⎜⎜⎝

m1 cos ξ y

m2 cos ξ y

m4sinξ y

m5 cos ξ y

⎞
⎟⎟⎟⎟⎠ , (101)

where the deformation vectors y′V
1 , yV

1 and yV
2 are the same as those in the case of point sources, and mi (i = 1, . . . , 6) are defined in eq. (27).

In Fig. 6 we show the vertical cross-sections of internal displacement fields at the time t = 0, 4τ , 20τ and 20 000τ . Here, τ = η2/μ2

denotes the characteristic time of stress relaxation in the viscoelastic substratum. The displacement fields at the early stage (t = 0, 4τ ) are

similar to those in the case of the 100-km-long crack (Fig. 5). As time passes (t = 20τ ), the upward displacements in the elastic surface layer

gradually disappear, and the divergent horizontal displacements become dominant. Unlike the case of the 100-km-long crack, the deformation

area gradually expands with time to infinite distance. Then, at the final stage (t = 20 000τ ), we can observe the horizontally divergent rigid

plate displacements, accompanied by upward displacements in the viscoelastic substratum.

In Fig. 7 we show the profiles of the horizontal and vertical components of the surface displacement fields in Fig. 6 at t = 0, 2τ , 4τ , 10τ ,

20τ , 100τ and 20 000τ . From Fig. 7(a) we can observe that the initial divergent horizontal displacement field gradually expands from the

source area to the distant region with time and finally tend to the divergent rigid plate displacements with the half value of crack opening. From

Fig. 7(b), on the other hand, we can observe that the initial vertical displacements characterized by uplifts in the source area gradually decay

to zero with time. Hofton & Foulger (1996) have computed the temporal change in the profiles of surface displacement fields due to crack

opening in a very similar situation (sudden opening of an infinitely long vertical crack cutting through the 10-km-thick elastic surface layer

with slightly different elastic constants), and so we can directly compare their results with our results in Fig. 7. In their results, the horizontal

displacements overshoot the half value of crack opening at t = 2τ , and the transition to the divergent rigid plate displacements is irregular.

As for the vertical displacements (their profiles are probably upside down), the significant deformation of the elastic plate remains at t→∞.

These discrepancies between their results and our results must come from the mathematical expressions used for numerical computation.

Hofton & Foulger (1996), based on Hofton et al. (1995), used the up–going algorithm of the propagator matrix, which is numerically unstable

at the Earth’s surface. In addition, the use of an approximation technique for inverse Laplace transformation (Rundle 1982a) would also cause

to the discrepancies.
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Figure 6. Temporal change of the internal displacement fields due to the sudden opening of an infinitely long crack that divides the 10-km-thick elastic surface

layer overlying the viscoelastic substratum into two plates. The vertical cross-sections of the internal displacement fields at t = 0, 4τ , 20τ and 20 000τ are

shown. Here, τ = η2/μ2 denotes the characteristic time of stress relaxation in the viscoelastic substratum. The double solid line represents the vertical section

of the crack. The values of structural parameters used for computation are given in Table 1.
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Figure 7. Temporal change in the profiles of the surface displacement fields due to crack opening in the same situation as in Fig. 6. (a) Horizontal components.

(b) Vertical components. In both cases the displacement profiles at t = 0, 2τ , 4τ , 10τ , 20τ , 100τ and 20 000τ are shown. Here, τ = η2/μ2 denotes the

characteristic relaxation time in the viscoelastic substratum. We can compare these displacement profiles with those in Fig. 8 of Hofton & Foulger (1996).

The diagrams in Figs 6 and 7 show the viscoelastic responses to a unit–step crack opening. According to Matsu’ura & Sato (1989) and

Sato & Matsu’ura (1993), we can read these results as the displacement rates (velocities) due to steady crack opening. Denoting the response

to a unit–step crack opening over the whole plate interface at t = 0 by Ui(x, t), we can express the cumulative displacements wi(x, t) due to

steady crack opening at a constant rate Vpl for t ≥ 0 by using the technique of hereditary integral as
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wi (x, t) = Vpl

∫ t

0

Ui (x, t − τ )dτ . (102)

Since the viscoelastic step response Ui(x, t) becomes constant Ui(x, t → ∞) at the time t much longer than the effective relaxation time τ e

∼ 100 τ of the composite system, we can obtain the displacement rate by differentiating the both sides of eq. (102) with respect to t :

vi (x, t) ≡ d

dt
wi (x, t) = VplUi (x, t → ∞) (t 
 τe). (103)

Thus, we can read the displacement fields at t = 20 000 τ in Figs 6 and 7 as the long-term averaged velocity fields due to steady crack opening

at a constant rate.

5.4 Deformation cycles in a ridge-transform fault system

Finally, we consider the deformation cycles associated with the periodic occurrence of interplate strike-slip earthquakes in the ridge-transform

fault system, which is composed of two parallel semi-infinite vertical cracks extending in opposite directions and a vertical transcurrent fault

that connects the semi-infinite cracks at their ends. The ridge-transform fault system divides the 10-km-thick elastic surface layer overlying a

viscoelastic substratum into two plates. We suppose the steady opening of the semi-infinite cracks at a constant rate and the periodic stick-slip

motion at the transcurrent fault with the interval of 100 yr. In Fig. 8 we show the temporal change of the horizontal displacement field at the

Earth’s surface during one earthquake cycle after many times repetition of stick-slip motion with the same interval. As the reference we took

the displacement field just after the occurrence of the last earthquake (t = 0+ yr). Then, the displacement field at t = 100− yr represents that

just before the occurrence of the next earthquake. After the completion of one earthquake cycle (t = 100+ yr), unlike the deformation cycles

in subduction zones (Matsu’ura & Sato 1989), we can only observe horizontally divergent rigid plate displacements. In the interseismic period

(0+ ≤ t ≤ 100−) we can observe the gradual increase of the distortion of the horizontal displacement fields around the transcurrent fault. The

occurrence of a strike-slip earthquake at the transcurrent fault completely releases the distortion of the horizontal displacement field.
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Figure 8. Temporal change of the surface horizontal displacement field during one earthquake cycle in the ridge-transform fault system. The ridge-transform

fault system is composed of two parallel semi-infinite vertical cracks (double solid lines) and one vertical transcurrent fault (single solid line). The thickness

of the elastic surface layer is taken to be 10 km. The values of the other structural parameters are given in Table 1. We suppose the steady opening of the

semi-infinite cracks at a constant rate and the periodic stick-slip motion at the transcurrent fault with the interval of 100 yr. The displacement field just after

the occurrence of the last earthquake (t = 0+ yr) is taken as the reference. In the interseismic period (0+ ≤ t ≤ 100−) we can observe the gradual increase

of the distortion of the horizontal displacement fields (represented by solid arrows) around the transcurrent fault. The occurrence of a strike-slip earthquake at

the transcurrent fault completely releases the distortion of the horizontal displacement field. Then, after the completion of one earthquake cycle (t = 100+ yr),

horizontally divergent rigid plate displacements remain.
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6 D I S C U S S I O N A N D C O N C L U S I O N S

We succeeded in obtaining the expressions for internal deformation fields due to a moment tensor in an elastic/viscoelastic multilayered

half-space under gravity. This is the general extension of the mathematical formulation for shear faulting by Fukahata & Matsu’ura (2005,

2006). In Section 2, we derived the expressions of static displacement potentials for a moment tensor in cylindrical coordinates. In Section

3, representing internal displacement fields by the superposition of a particular solution for a moment tensor in an infinite elastic medium

and the general solution for a layered elastic half-space without sources, and using the generalized propagator matrix method developed by

Fukahata & Matsu’ura (2005), we obtained the expressions for internal displacement fields due to a moment tensor in an elastic multilayered

half-space. In Section 4, applying the correspondence principle of linear viscoelasticity (Lee 1955; Radok 1957) to the associated elastic

solution, we obtained the general expressions for internal displacement fields due to a moment tensor in an elastic/viscoelastic multilayered

half-space.

So far, in most studies, static solutions have been obtained by taking the limit of ω→0 for the corresponding dynamic solutions in the

frequency domain. In static problems, however, the solutions derived from dynamic displacement potentials degenerate with one another

(Takeuchi 1959; Sato 1971; Zhu & Rivera 2002), and so we must find a new set of displacement potentials that produces independent static

solutions. In the present study, to avoid such a complicated process, we directly obtained the expressions of static displacement potentials in

cylindrical coordinates by taking the limit of t→∞ for the corresponding dynamic solution in Cartesian coordinates (Aki & Richards 1980)

and performing its Hankel transformation.

In the framework of elasticity theory any indigenous source can be represented by a moment tensor (Backus & Mulcahy 1976a, b).

Therefore, the general expression for a moment tensor obtained in the present study includes the internal displacement fields due to isotropic

expansion, crack opening and shear faulting as special cases. The expression for shear faulting is identical with that obtained by Fukahata &

Matsu’ura (2005, 2006). By adding the expressions for isotropic expansion and crack opening we completed the mathematical formulation for

internal deformation fields due to indigenous sources. The general formulation with moment tensor is useful in computing internal deformation

fields due to composite force systems corresponding to composite processes such as dyke intrusion with pressure increase, shear fracture with

dilatancy, ridge-transform fault interaction, and ridge subduction.

As for isotropic expansion we may consider two different cases; transformational volume expansion Θ and pressure increase Δp in a

spherical cavity. The general expressions in Section 3 include the former case, but not the latter case. If the source is located in an elastic layer,

we can directly obtain the expression for uniform pressure increase Δp in a spherical cavity with radius a by replacing the factor (4πa3/3)KΘ

of the source vector j in eq. (28) with (K/μ + 4/3)πa3Δp. On the other hand, if the source is located in a viscoelastic layer, the solutions for

these two sources have quite different time-dependence from each other, because the source vector j in the latter case includes the rigidity μ,

which should be replaced with the s-dependent operator μ̂(s) = μs/(s + 1/τ ).

The viscoelastic solution in the s-domain is directly obtained by applying the correspondence principle to the associated elastic solution.

In order to obtain the viscoelastic solution in the time domain we must perform the inverse Laplace transformation of the solution in the

s-domain. This is a difficult problem. For example, Rundle and his co-workers (Rundle 1978, 1982a; Hofton et al. 1995) have introduced an

approximation technique to perform the inverse Laplace transform. Wang et al. (2006), who handled the problem in the Fourier transform

domain instead of the Laplace transform domain, have developed an approximation technique to perform the inverse Fourier transform. We

performed the inverse Laplace transformation in an exact way by using the algorithm developed by Matsu’ura et al. (1981).
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A P P E N D I X A : E X P R E S S I O N S F O R S T RU C T U R E - D E P E N D E N T M AT R I C E S

In this Appendix, we show the explicit expressions for the structure-dependent matrices used in Section 3 of the text. The structure-dependent

matrices are independent of source properties, and so they are the same as those for shear faulting in Fukahata & Matsu’ura (2005).

The explicit expressions for E j (z) and E′
j (z), which are the z-dependent parts of the deformation matrices Yg(z; j) and Y′g(z; j), are

given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E j(	=n)(z) =

⎡
⎢⎢⎢⎢⎣

c(z) −γ j zξc(z) s(z) −γ j zξs(z)

s(z) (2 − γ j )c(z) − γ j zξs(z) c(z) (2 − γ j )s(z) − γ j zξc(z)

s(z) (1 − γ j )c(z) − γ j zξs(z) c(z) (1 − γ j )s(z) − γ j zξc(z)

c(z) s(z) − γ j zξc(z) s(z) c(z) − γ j zξs(z)

⎤
⎥⎥⎥⎥⎦

E′
j(	=n)(z) =

[
c(z) s(z)

s(z) c(z)

] , (A1)

En(z) = e−zξ

⎛
⎜⎜⎜⎜⎝

1 0 0 γnzξ

0 2 − γn + γnzξ 1 0

0 1 − γn + γnzξ 1 0

1 0 0 1 + γnzξ

⎞
⎟⎟⎟⎟⎠ , E′

n(z) = e−zξ

(
1 0

0 1

)
, (A2)

E j (0) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 2 − γ j 1 0

0 1 − γ j 1 0

1 0 0 1

⎞
⎟⎟⎟⎟⎠ , E−1

j (0) =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 −1 0

0 −1 + γ j 2 − γ j 0

−1 0 0 1

⎞
⎟⎟⎟⎟⎠ , (A3)

with

s(z) = sinh(zξ ), c(z) = cosh(zξ ) (A4)

and

γ j = (3K j + μ j )/(3K j + 4μ j ), (A5)

where Kj and μ j are the bulk modulus and the rigidity of the jth layer, respectively.

The explicit expression for the down–going expression F j (z) of the generalized propagator matrices defined in eq. (54) of the text is

given by

F j (z)=

⎡
⎢⎢⎢⎢⎣

c(z) + γ j zξs(z) (γ j − 1)s(z) − γ j zξc(z) (2 − γ j )s(z) + γ j zξc(z) −γ j zξs(z)

(γ j − 1)s(z) + γ j zξc(z) c(z) − γ j zξs(z) γ j zξs(z) (2 − γ j )s(z) − γ j zξc(z)

γ j s(z) + γ j zξc(z) −γ j zξs(z) c(z) + γ j zξs(z) (1 − γ j )s(z) − γ j zξc(z)

γ j zξs(z) γ j s(z) − γ j zξc(z) (1 − γ j )s(z) + γ j zξc(z) c(z) − γ j zξs(z)

⎤
⎥⎥⎥⎥⎦ . (A6)

The explicit expressions for the other structure-dependent matrices are given by

G =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 ρ1g/2μ1ξ 0 1

⎞
⎟⎟⎟⎟⎠ , G−1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 −ρ1g/2μ1ξ 0 1

⎞
⎟⎟⎟⎟⎠ , (A7)

D j =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 μ j/μ j+1 0

0 0 0 μ j/μ j+1

⎞
⎟⎟⎟⎟⎠ , D′

j =
(

1 0

0 μ j/μ j+1

)
, (A8)

where ρ 1 is the density of the surface layer, and g is the acceleration of gravity at the Earth’s surface.
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