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[1] We perform a retrospective forecast experiment on the 1992 Landers sequence
comparing the predictive power of commonly used model frameworks for short‐term
earthquake forecasting. We compare a modified short‐term earthquake probability (STEP)
model, six realizations of the epidemic‐type aftershock sequence (ETAS) model, and four
models that combine Coulomb stress changes calculations and rate‐and‐state theory to
generate seismicity rates (CRS models). We perform the experiment under the premise
of a controlled environment with predefined conditions for the testing region and data for
all modelers. We evaluate the forecasts with likelihood tests to analyze spatial consistency
and the total amount of forecasted events versus observed data. We find that (1) 9 of the
11 models perform superior compared to a simple reference model, (2) ETAS models
forecast the spatial evolution of seismicity best and perform best in the entire test suite,
(3) the modified STEP model matches best the total number of events, (4) CRS models can
only compete with empirical statistical models by introducing stochasticity in these models
considering uncertainties in the finite‐fault source model, and (5) resolving Coulomb
stress changes on 3‐D optimally oriented planes is more adequate for forecasting purposes
than using the specified receiver fault concept. We conclude that statistical models perform
generally better than the tested physics‐based models and parameter value updates
using the occurrence of aftershocks generally improve the predictive power in particular
for the purely statistical models in space and time.
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1. Introduction

[2] Motivated by the observed spatiotemporal clustering
of triggered earthquakes following moderate and large earth-
quakes a wide range of statistical and physics‐based seis-
micity models has been developed and compared with
observations over the past decades. Some models were
derived from empirical statistics and the concept of trig-
gering (e.g., the epidemic‐type aftershock sequences (ETAS)
model [Ogata, 1988]; short‐term earthquake probabilities
(STEP) [Gerstenberger et al., 2005]). Others are based on
physical concepts of static or dynamic stress transfer [e.g.,
Aoi et al., 2010; Catalli et al., 2008; Gomberg et al., 2001;

Harris, 1998; King et al., 1994; Steacy et al., 2005a; Toda
et al., 1998], or viscoelasticity and fluid migration [e.g.,
Bosl and Nur, 2002; Nur and Booker, 1972; Miller et al.,
2004]. While each model is validated to some extent by
observations even in a truly prospective way [e.g.,Marzocchi
and Lombardi, 2009], comparing the predictive power of
these models directly is difficult because different studies
usually use different data sets, regions and timescales. Such
comparisons, however, are important for two reasons: (1) to
use the best available models for short‐term earthquake
forecasts and time‐dependent seismic hazard assessment and
(2) to enhance our understanding of the physical mechan-
isms of earthquake interaction and earthquake predictability.
[3] The Collaboratory for the Study of Earthquake Pre-

dictability (CSEP, www.cseptesting.org) [Jordan, 2006] and
the Regional Earthquake Likelihood Models project (RELM,
www.relm.org) [Field, 2007] highlight the need within the
seismological community for comparative testing of models
and defined frameworks for prospective testing of models on
all scales. Here, we alter the CSEP concept: We evaluate
and compare the predictive skill of a range of models for a
specific aftershock sequence through statistical testing. We
perform a retrospective earthquake predictability experiment
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[see also Jordan, 2006; Field, 2007] to forecast the after-
shock sequence of the 1992, M7.3, Landers earthquake
sequence. We investigate the forecasting abilities of state‐
of‐the‐art models of clustered seismicity with one of the best
available data sets of an aftershock sequence. As a group of
modelers and testers, we jointly define the rules of this
retrospective forecasting experiment, and we use statistical
tests proposed by CSEP [Schorlemmer et al., 2007;
Schorlemmer and Gerstenberger, 2007; Zechar et al., 2010]
to evaluate the forecasts. Recent analyses have shown that
such tests may be biased in analyzing clustering models
[Lombardi and Marzocchi, 2010] as represented in this
experiment; however, we emphasize that the main purpose
here is to show how model forecasting performances may be
evaluated and compared in a rigorous retrospective scientific
experiment. Such kind of experiments are very important to
provide a first evaluation of models that are not yet tested in
a truly prospective experiment. In addition we outline ways
to improve testing procedures that are yet not feasible to
perform for all models. We report the results for the Landers
sequence and we hope to expand this collaborative approach
to retrospective testing of time‐varying earthquake forecast
models to other prominent aftershock sequences to assess
the robustness of the results.
[4] Evaluating retrospective forecasts on the scale of

aftershock sequences is in our opinion an important addition
to the ongoing prospective tests within the framework of
CSEP. While prospective testing remains the necessary
standard for an unbiased performance evaluation, the eval-
uation progress and feedback to modelers can be slow
because meaningful statistics accrue slowly with the number
of events. For example, only first intermediate results for the
Regional Earthquake Likelihood Model Experiment in
California are now available from prospective testing
[Schorlemmer et al., 2010]. Retrospective testing, particu-
larly when done in the spirit of a collaboratory, allows for
much faster feedback: poorly performing models can be
identified and either rejected or improved [Mulargia, 1997,
2001]. Retrospective testing can give pragmatic guidance

about the quality and limitations of particular models and
lead to recipes on how to best apply a particular model. By
focusing on individual aftershock sequences and small
magnitudes, we ensure that numerous events are available
to evaluate the performance. Moreover, some prominent
models of triggered seismicity require data (such as fault
orientations or focal mechanisms) that may not be available
in near‐real time or for experiments at larger scales.
[5] However, evaluating retrospective forecasts may result

in biased, overly optimistic results compared to prospective
experiments because of already existing knowledge. First,
we assume to have a finite‐fault source model for the main
shock for the first forecast; although finite‐fault source
models are now rapidly available in about a few hours after
an event (e.g., from the USGS at http://earthquake.usgs.gov/
earthquakes/), this will never be the case for a forecast
immediately starting after a strong event occurred, the time
when statistical models are able to generate a first forecast.
Second, we select a catalog with locations computed by
waveform cross‐correlation techniques [Hauksson, 2000]
that are generally not available in near‐real time and have
information about parameters that are needed to set up
models. Such data may become more rapidly available in
the future and might thus benefit near‐real time prospective
experiments. Third, modelers benefit from their knowledge
of the well‐known Landers earthquake sequence from ear-
lier studies, and this might bias the forecasts. Finally, some
models were explicitly developed on earthquake catalogs
that include the Landers sequence. Therefore, it may be that
the retrospective forecasts analyzed here provide upper
limits of the predictive skill of the evaluated models.
[6] In this first retrospective collaborative experiment, we

evaluate the capabilities of 11 different models of triggered
seismicity to forecast the spatial and temporal distribution of
magnitude ML ≥ 3 earthquakes after the Landers earthquake
(Table 1). In particular, we investigate whether (1) the
observations are consistent with the forecasted rates in terms
of total number and spatial distribution, (2) physics‐based
models based on Coulomb stress changes and rate‐and‐state

Table 1. Overview of the Forecast Models That Contributed Forecasts for the Retrospective Testing Experimenta

Model Type/
Model Name Features

Total/Free
Parameters Modeler/Reference

0 STEP‐0 generic STEP Mth = 6 reference model 6/0 Woessner/Gerstenberger et al. [2005]
1 STEP‐1 modified STEP Mth = 2.5 6/6 Woessner/Gerstenberger et al. [2005]
2 ETAS‐1 space‐independent parameters

stationary homogeneous bg.
7/7 Hainzl/Hainzl et al. [2008]

3 ETAS‐2 K is space dependent stationary
homogeneous bg.

7/7 Hainzl/Hainzl et al. [2008]

4 ETAS‐3 stationary heterogeneous bg. 8/7 q = 1.5 Lombardi/Lombardi et al. [2010]
5 ETAS‐4 NETAS nonstationary heterogeneous bg. 9/8 q = 1.5 Lombardi/Lombardi et al. [2006]
6 ETAS‐5 stationary heterogeneous bg.

“effective parameters”
6/0 Werner/Helmstetter et al. [2006, 2007]

7 ETAS‐6 stationary heterogeneous bg. updating
“effective parameters”

6/5 Werner/Helmstetter et al. [2006, 2007]

8 CRS‐1 space‐dependent stressing rate
nonuniform reference seismicity

1/1 Catalli/Catalli et al. [2008]

9 CRS‐2 stationary heterogeneous background 4/1 r not fix Enescu/Toda et al. [1998]
10 CRS‐3 stress heterogeneity CV stationary uniform bg. 4/3 ta fix Hainzl/Hainzl et al. [2009]
11 CRS‐4 stress heterogeneity CV stationary uniform bg.

poroelastic & coseismic
4/3 ta fix Hainzl/Hainzl et al. [2009]

aThe model number, the model class, first‐order features, the number of total and free parameters, as well as the modeler and the reference(s) of the
models are given. Mth is a threshold magnitude that determines which earthquakes are used as triggering events in the STEP model.
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friction theory (CRS models) perform better than purely
statistical models, and (3) different flavors of available sta-
tistical models provide substantially different results.
[7] We structure the manuscript by introducing the data

provided to all modelers for usage in the experiment. Sec-
ond, we outline the testing class that defines the testing
region, period, and magnitude range. Third, we summarize
the models that provided forecasts; each model has previ-
ously been published and was altered to match the testing
class requirements: the models thus were only changed to
use the provided authorized data. Fourth, we introduce the
statistical tests and measures that we use to rank the per-
formance of the models in comparison to the observed
seismicity. Based on these measures, we discuss the results
of our experiment.

2. Data

[8] We use the relocated earthquake and the focal mech-
anism catalogs [Hauksson and Shearer, 2005; Hauksson,
2000] provided by the Southern California Earthquake Data
Center (SCEDC) (http://data.scec.org/research/altcatalogs.

html). We only include shallow (<30 km) earthquakes. We
define separate data collection and forecast testing regions
(Figure 1a). Models may select earthquakes from the larger
collection region as input data for their forecasts within the
testing region to minimize boundary effects. The forecast
box defines the area earthquakes are forecasted in and tested
for.
[9] There are 98879 earthquakes in the relocated catalog

with local magnitude ML ≥ 0.1 (1563 with ML ≥ 3.0) located
in the collection region between 1984 and the time TM of the
Landers main shock. In the testing region, 38941 ML ≥ 0.1
occurred before Landers, of which 670 events haveML ≥ 3.0

Figure 1. (a) Region of the 1992 Landers aftershock sequence with the experiment’s data collection
region (−119°W, 32.5°N; −115°W, 36.5°N) and forecast testing region (−117.5°W, 33.25°N to
−115.5°W, 35.5°N). Also shown are the surface projection of the Wald and Heaton [1994] Landers
earthquake fault model; focal mechanisms of the Joshua Tree, Big Bear, and Landers earthquakes; along
with earthquakes with magnitudes ML ≥ 2 (black dots) and target events with magnitude ML ≥ 3 in the
testing region (light gray squares). (b) Magnitude of completeness during the first 5 days after the Landers
main shock in the testing region estimated using the Mc(EMR) method by Woessner and Wiemer [2005]
(gray curve with uncertainties based on 500 bootstrap samples) and the method by Helmstetter et al.
[2006] (black curve). (c) Testing class scheme: TM, the main shock time; Di, days after TM; tLi, learn-
ing periods; tFi, forecast periods; TEi, times of the test performance.

Table 2. Number of Learning and Target Earthquakes and Focal
Mechanisms Available in the Testing Regiona

Period

Relocated Events
Events With Fault
Plane Solution

ML ≥ 0.1 ML ≥ 3 ML ≥ 0.1 ML ≥ 4.5

1984 < TM 38941 670 10102 15
TM − TM + 90d 21647 1245 4354 31

aTM is the main shock time of the 1992 ML 7.3 Landers earthquake.
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(Table 2). In the 90 days after the Landers main shock, the
catalog lists 1245 events with ML ≥ 3.0; to forecast these
target events is the objective of the experiment. Due to
computation time considerations, CRS modelers agreed to
only use focal mechanisms of events with ML ≥ 4.5. In the
testing period, there are 31 events with focal mechanisms
that could be used.
[10] Some of the models require a regional stress field as

input data. We assume a direction of the maximum com-
pressive stress oriented at N7°E in agreement with King et al.
[1994]. The modelers used a differential stress (s1 − s3) of
10 MPa and set the vertical stress s2 to an intermediate
value to account for the strike‐slip environment. In partic-
ular, s1, s2, and s3 were assumed to be 5, 0 and −5 MPa.
This is a simplifying assumption as the stress field has
undergone multiple changes in this time period [Hauksson,
1994] and may be heterogeneous on the scale of the Land-
ers rupture [Hardebeck and Hauksson, 2001]. Furthermore,
Steacy et al. [2005b] showed that predictions based on
Coulomb failure stresses are sensitive to the magnitude and
direction of the regional stress field when resolving the
stress changes onto optimally oriented planes, both in 2‐D
and 3‐D. However, to facilitate the comparison between the
models, we selected this simple regional stress field.
[11] There are multiple finite‐fault source models avail-

able for the Landers earthquake [Cotton and Campillo,
1995; Cohee and Beroza, 1994; Hernandez et al., 1999;
Wald and Heaton, 1994; Zeng and Anderson, 2000]. Details
of the slip distribution play an important role in the stress
computations close to the causative fault, but not in the far
field. The stress variability resulting from different source
models and its impact on parameter estimates and model
forecasts was investigated by Hainzl et al. [2009]. To make
comparisons between models easier, we use the same finite‐
fault slip model for all CRS models, namely the model by
Wald and Heaton [1994], who incorporated multiple data
sets to constrain their solution. For the 1992 ML = 6.5 Big
Bear earthquake, the line source model by Jones and Hough

[1995] is used. All source models are available from the
finite‐fault source model database at ETH Zurich (http://
www.seismo.ethz.ch/srcmod by M. P. Mai). Due to the
resolution and uncertainty of the slip model it cannot gen-
erally be expected that the seismicity rate computed at grid
cells close to the source model correctly replicate the
occurrence of seismicity.
[12] The CRS models may calculate multiple stress steps

due to earthquakes with a magnitude ML ≥ 4.5 (Table 2). To
obtain a simple estimate of the amount of slip and the
dimension of the area, we assume that the moment magni-
tude is equal to the local magnitude [Clinton et al., 2006].
We calculate the source dimensions based on the scaling
relations by Wells and Coppersmith [1994] that differentiate
between faulting style (dip slip or strike slip) based on the
events’ rake. This information is only used in CRS‐1 (Table 1)
[Catalli et al., 2008]. We provide the entire data sets and
predefined parameter values needed to set up model calcu-
lation as auxiliary material.1 Parameter values and choices for
single models are explained in section 4 (see Tables 3 and 4).

3. Definition of the Retrospective Forecasting
Experiment

[13] Testing needs to be performed against a complete
data set. The completeness threshold in an aftershock
sequence varies strongly in time. We estimated the com-
pleteness threshold for the period of interest, with a partic-
ular focus on the first days. We analyzed the first five days
following the Landers main shock with two methods: (1) the
Entire Magnitude Range method Mc(EMR) by Woessner
and Wiemer [2005] and (2) the completeness function by
Helmstetter et al. [2005, 2006]. For Mc(EMR), we sample
the events in successive 0.2 day time windows. We find that
both methods lead to consistent results (Figure 1b) indicat-
ing that the completeness level isMc = 4 for the first day and
improves to Mc = 3 in the following days. This complete-
ness threshold is achieved throughout the 90 days testing
period. Thus we test against magnitudes 4 ≤ ML ≤ 8 on the
first day and against 3 ≤ ML ≤ 8 thereafter.
[14] To facilitate a comparative evaluation of different

forecast models, the forecasts need to comply with a set of
rules. The objective of this retrospective experiment is to
forecast the expected number of earthquakes over successive
24 h periods in spatial cells of 0.05 by 0.05 degrees in the
magnitude range 3 ≤ ML ≤ 8 with a binning of D ML = 0.1.
The last bin includes events above magnitude 8. The first
24 h forecast period starts at the time TM of the 1992
Landers main shock (including information about the main
shock). From then on, the models successively forecast
seismicity rates in 24 h windows with the possibility to
update parameter values and forecasts based on all hitherto
observed earthquakes. The forecasts are computed for a total
of 90 days and evaluated after each 24 h period (Figure 1c).

4. Overview of Models

[15] All 11 different models in this study have been
published elsewhere (see Table 1) and applied to similar

Table 3. Parameter Values of the ETAS Modelsa

ETAS Number

Parameter1/2 3 4 5b 6

m(M ≥ 3),
[day−1]

0.046 0.19 0.19 0.221 0.221 background rate

K 0.021 0.021 0.021 0.65 0.65 productivity
a 1.6 1.2 1.2 1.7 1.7 a value
c, [days] 0.0031 0.002 0.002 0.0035 0.0035 c value
p 1.06 1.06 1.06 1.06 1.06 decay parameter
fd 0.73 0.73
b 0.91 0.91 0.91 0.91 0.91 b value
g 0.6 0.6
d0, [km] 0.048 0.3 0.3
q 1.44 1.71 1.5
n, [day−1] 0.19
Mmin 3 3 3 3 3 min. magnitude

for triggering
fi(r, Mi) fpl fpl fpl fgs fgs spatial PDF

aInitial values for the first forecast at the time of the Landers main shock.
The parameter values are reestimated with available data up to the start date
of the subsequent 24 h forecast.

bModel ETAS‐5 does not reestimate the parameters during the sequence.
fpl and fgs refer to power law and gaussian smoothing of seismicity rates,
respectively.

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/jb/
2010JB007846. Other auxiliary material files are in the HTML.
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tectonic regimes; therefore we only provide a brief over-
view. The number of free parameters is representative for
the number of variables in the model equations that are
estimated with a maximum likelihood approach and that can
be updated during the time sequence; it is however difficult
to define the real number of free parameters for models that
combine a time‐invariant and a time‐variable part in a two‐
step procedure (e.g., for STEP models or ETAS‐6) or that
estimate the parameter values spatially; the number could be
considered much higher. In this sense the numbers in the
Tables 3 and 4 represent only a minimum number. For
model ETAS‐5 based on Helmstetter et al. [2006], we con-
sider the number of free parameters as zero: the parameter
values were estimated from the entire Southern California
catalog including the Landers sequence; the parameters are
fixed and partly expert choice, partly from maximum like-
lihood estimation. We emphasize that we consider the
forecast results of each model as having the same degree of
freedom. For reference, Tables 3 and 4 list important initial
model parameter values estimated from seismicity prior to
the Landers sequence or taken from the literature.

4.1. Statistical Forecast Models

[16] The statistical forecast models are based on empirical
relationships that emerged from analyzing multiple earth-
quake catalogs. The most important empirical relations
herein are the frequency‐magnitude distribution [Gutenberg
and Richter, 1944], the Omori‐Utsu law [Utsu, 1961] and
the ETAS model [Ogata, 1988]; yet empirical studies on
the distribution of earthquakes in space contribute equally
important to the design of statistical models. The models
should be understood as frameworks for which single com-
ponents can be modified, added and supplemented in future
realizations upon success in experiments such as this one.
[17] Some statistical models (the STEP models and

ETAS‐5 and ETAS‐6) merge a time‐invariant spatially het-
erogeneous background model with time‐varying seismicity
rates. To estimate the background model, we select earth-
quakes from 1 January 1984 until 31 December 1991 in

the collection region (Figure 1). We decluster the catalog
with the algorithm by Reasenberg [1985] modified by
Helmstetter et al. [2007]. This background seismicity model
is used for models STEP‐0, STEP‐1, ETAS‐5, and ETAS‐6.
4.1.1. A Reference Model: STEP‐0
[18] The STEP model is a spatially extended version of

the simple aftershock model by Reasenberg and Jones
[1989, 1990, 1994]:

� t;Mð Þ ¼ 10a′þb Mm�Mthð Þ

t þ cð Þp ð1Þ

where l(t, M) is the rate of aftershocks with magnitudes
greater than a threshold M ≥ Mth occurring at time t, and Mm

denotes the main shock magnitude. The constants a′ and b
are derived from the frequency‐magnitude distribution with
a′ as described by Reasenberg and Jones [1989]. The con-
stants p and c result from the Omori‐Utsu law [Utsu, 1961].
[19] To assess whether the research in the past decades has

lead to significantly improved forecast models, we define a
simple reference model (STEP‐0) based on Reasenberg and
Jones [1989, 1990, 1994] (Table 1). STEP‐0 corresponds
to the generic element of the STEP model [Gerstenberger
et al., 2004; Woessner et al., 2010] in that it does treat
earthquakes always as a point source. STEP‐0 only con-
siders earthquakes with magnitude ML ≥ 6.0, i.e., the Joshua
Tree ML = 6.1, the Landers ML = 7.3 and the Big Bear ML =
6.5 earthquakes, to forecast seismicity rates. The earthquake
rates are smoothed radially with a decay of r−2 around the
epicenters of the causative events, with r being the epicen-
tral distance. The initial or generic parameters for estimating
the rate of seismicity in the model are: a′ = −1.67, b = 0.91,
p = 1.08, c = 0.05 days [Reasenberg and Jones, 1994;
Gerstenberger et al., 2004].
4.1.2. STEP Model: STEP‐1
[20] In addition to the simplified reference model STEP‐0,

we include a full STEP model (STEP‐1, Table 1)
[Gerstenberger et al., 2005] adjusted to the Landers region
and with the same background model as STEP‐0. In this
model, earthquakes with magnitudes ML ≥ 2.5 are assumed
to contribute to the triggering of earthquakes in the target
magnitude range because small events can significantly
increase the probabilities of larger earthquakes [Helmstetter
et al., 2005]. Additionally, the parameters of equation (1)
are estimated first for the total sequence and then allowed
to vary spatially as soon as sufficient seismicity from the
aftershock sequence is available to resolve spatial variabil-
ity. All other parameter settings are the same as those of
Gerstenberger et al. [2004, 2005].
4.1.3. ETAS Model: ETAS‐1 to ETAS‐6
[21] The models ETAS‐1 to ETAS‐6 (see Table 1 and, for

parameters, Table 3) are based on the formulations by
[Ogata, 1988, 1998; Ogata and Zhuang, 2006; Zhuang
et al., 2002; Lombardi et al., 2006; Helmstetter et al.,
2006]. The seismicity rate l(t, x, y) at each point in space
(x, y) and time t is given by

� t; x; yð Þ ¼ � t; x; yð Þ þ
X
i:ti<t

Ke� Mi�Mthð Þ

t � ti þ cð Þp fi r;Mið Þ ð2Þ

with the model parameters K, c, a, p, and the background
rate m. fi (r, Mi) is a normalized function describing the

Table 4. Parameter Values in CRS Modelsa

CRS Number

Parameter1 2 3 4

mf 0.75 0.3 0.3 0.75 friction coefficient
As, [MPa] 0.04 0.04 0.04 0.04
ta
b, [yr] A�

_� r
50 27.4 27.4 sequence duration

r(M ≥ 3),
[day−1]

0.176c 0.75 0.75 0.75 background

W, [km] 30 thickness of
seismogenic area

B 0.47 0.6 Skempton coeff.
D, [m

2

s ] 0.1 hydraulic diffusivity
~a 0.8 dimensionless effective

stress coeff.
CV 1 1 coeff. of variation of

stress values

aInitial values for the first forecast at the time of the Landers main shock.
The parameter values are reestimated with available data up to the start date
of the subsequent forecast.

bHere _� r and ta are spatially variable in CRS‐1 with _� r(ref ) ffi MoW
−1

b
1:5�b[10

(1.5−b)(Mmax−Mc) − 1] [Catalli et al., 2008; Cocco et al., 2010]. All
models use a b value of b = 0.91.

cReference rate.
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spatial probability distribution of triggered seismicity that
differs between the various ETAS models.
[22] Models ETAS‐1 to ETAS‐4 use a power law func-

tion of the epicentral distance r to the parent event

fpl rð Þ ¼ q� 1ð Þdpl Mð Þ2 q�1ð Þ

� r2 þ dpl Mð Þ2
h iq ð3Þ

with the additional parameter q and the magnitude‐dependent
distance parameter dpl, which varies between ETAS‐1 to
ETAS‐4 as discussed below. In contrast, ETAS‐5 and
ETAS‐6 use a Gaussian kernel [Helmstetter et al., 2006,
2007]:

fgs rð Þ ¼ Cgs exp � r2

2dgs Mð Þ2
 !

ð4Þ

where Cgs is a normalization constant and dgs(M) = 0.5 +
fd × 0.01 × 100.5M km, and fd is a free parameter measuring
the size of the rupture zone. Additionally, ETAS‐5 and
ETAS‐6 obtain the spatial aftershock distribution due to
earthquakes larger than magnitude 5.5 by smoothing the
locations of early aftershocks.
[23] ETAS‐2 differs from ETAS‐1 only by a spatially

variable aftershock productivity K in equation (2), which is
estimated by comparing the predicted and observed initial
aftershocks: aftershock locations are smoothed according to
Helmstetter et al. [2007]; then K is replaced in each grid cell
by Ki = K · (Nobs,i − Nback)/(NF,i − Nback), where Nback = m ×
T × Ai is the number of background events for the forecast of
the spatial probability map of future earthquakes. Nobs and
NF are the observed and forecasted number of events, T the
forecast period and Ai the area of the ith grid cell.
[24] In contrast to the other ETAS models, ETAS‐1 and

ETAS‐2 use only the parameter estimates of the space‐
independent ETAS model ( f (r, M) ≡ 1) to forecast the
number of future events. Hainzl et al. [2008] showed that
the space‐dependent parameters can be biased (in particular,
a in equation (2) may be underestimated) if the anisotropy
of the aftershock pattern is not taken into account. The
parameter estimates of the space‐dependent ETAS model
are then only used to calculate the spatial probability dis-
tribution of the predicted events (but not their rate).
[25] The models ETAS‐1 to ETAS‐4 calculate the fore-

casted number of events for the forecast period TF by
averaging over many Monte Carlo simulations of forecasts.
ETAS‐1 and ETAS‐2 perform 10000 simulations, while
1000 simulations are used by ETAS‐3 and ETAS‐4, resulting
in higher rate fluctuations. The simulations are needed to
provide for secondary aftershocks triggered during the target
period which can contribute significantly to the activity
[Helmstetter et al., 2003].
[26] In ETAS‐1 to ETAS‐4, parameter values are esti-

mated from preceding seismicity using the maximum like-
lihood method [Ogata, 1998; Daley and Vere‐Jones, 2003].
The model ETAS‐4 assumes that the background rate varies
with time. In the present study, we applied the strategy
proposed by Lombardi et al. [2010], to model the temporal
variation of the background rate and of the spatial distri-
bution of background seismicity. These short‐term varia-
tions can occur in volcanic regions [Lombardi et al., 2006]

or in tectonic regimes in which rapid fluid flow can play an
important role [Lombardi et al., 2010]. In particular, the
background rate is estimated in a moving, nonoverlapping
time window of 24 h in the collection region, where all the
other parameters are taken equal to the values inferred for
the whole sequence. For each forecasting time step, we
estimate the background rate, by using all data hitherto
occurred. In this way, we have a nonstationary ETAS model
with the background varying in space and time, as a
piecewise nonhomogeneous Poisson process.
[27] ETAS‐5 and ETAS‐6 use parameter values inferred

from southern California seismicity based on a maximum
likelihood estimate; parameter values of ETAS‐5 stay fixed
for the entire forecasting period. In contrast, ETAS‐6
updates its parameters on a daily basis according to the
following procedure: retrospective 1 day forecasts in each
0.05 degree cell are evaluated according to their Poisson
likelihood; parameters that maximize the likelihood are
chosen to forecast the next day in the sequence [Helmstetter
et al., 2006]. Thus, the estimated parameters are effective
values which account for direct and indirect activity in
the 1 day time window and do not require Monte Carlo
simulations.
[28] The ETAS models mainly differ in their assumptions

about the background seismicity (homogeneous or hetero-
geneous) and about the spatial probability distribution
function of aftershocks. ETAS‐1 and ETAS‐2 assume a
homogeneous and constant background rate m0, while the
background rate m(x, y) is spatially variable for the other
ETAS models. ETAS‐4 assumes additionally that the
background rate m(x, y, t) is nonstationary (time varying)
[Lombardi et al., 2006]. For the spatial probability distri-
bution fi(r, Mi) (equation 2), ETAS‐1 and ETAS‐2 both
calculate two forecasts each based on (1) a constant dpl = d0
and (2) a scaling function dpl =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�3:49þ0:91M

p
according to

Wells and Coppersmith [1994] and then combine the two
forecasts with weights determined by their respective
Akaike Information Criterion (AIC) scores. In contrast,
ETAS‐3 and ETAS‐4 use the scaling d(M) = d0e

g(M−Mth),
where g is an additional free parameter, while the parameter
q in equation (3) is fixed to 1.5 because this value is ex-
pected in the far field if aftershocks are triggered by static
stress changes [Lombardi et al., 2006]. Finally, ETAS‐5 and
ETAS‐6 use dgs(M) defined in equation (4).

4.2. Combined Coulomb Stress Change–Rate and State
Models (CRS Models)

[29] CRS models form a class of physics‐based models to
forecast aftershock seismicity. These models express the
hypothesis that earthquakes are trigged by static Coulomb
Stress Changes (DCFS) induced by a dislocation in an
elastic medium [e.g., King et al., 1994]. To obtain seismicity
rate forecasts, the Coulomb stress changes are combined
with the framework of rate‐ and state‐dependent friction
[Dieterich, 1994; Dieterich et al., 2000]. The theoretical
background of the CRS models and their sensitivity is has
been discussed in detail in literature [Catalli et al., 2008;
Cocco et al., 2010; Hainzl et al., 2009; Toda et al., 1998,
2005]. Initial parameter values are given in Table 4. Models
CRS‐2, CRS‐3, and CRS‐4 update the model parameters to
forecast the seismicity rates, CRS‐1 uses fixed parameter
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values estimated for the seismicity preceding the Landers
aftershock sequence.
[30] Rate‐and‐state friction theory accounts for the depen-

dence of slip on the frictional strength and the time‐dependent
healing that are observed in laboratory experiments
[Dieterich, 1994]. For a given stressing history, the seis-
micity rate hR depends on three model parameters: (1) the
background seismicity rate r, (2) the tectonic stressing rate
_� , and (3) the parameter product As, where A is a dimen-
sionless fault constitutive parameter and s the effective
normal stress. Alternatively to the parameter _� , the after-
shock relaxation time ta ≡ As/ _� can be used as free
parameter.
[31] While model CRS‐1 resolves Coulomb stress chan-

ges onto planes with a prespecified strike, dip and rake
approximately parallel to the Landers rupture (330°, 90°,
180° according to the convention proposed by Aki and
Richards [2002]), models CRS‐2 to CRS‐4 compute stress
changes on 3D optimally oriented planes.
[32] CRS‐1 is identical to the model by Catalli et al.

[2008] and Cocco et al. [2010], calibrated to the Landers
sequence. It reduces the rate‐and‐state model to only esti-
mate one free parameter (As) which is set equal to the
optimal value obtained by Catalli et al. [2008] for the 1997
MW5.9 Colfiorito, Italy, earthquake sequence (see Table 4).
In particular, the reference seismicity r(x, y) is estimated
from the smoothed seismicity prior to the main shock. This
reference seismicity differs from the background rate used in
the ETAS models because it includes clusters and does not
assume that background earthquakes are independent. The
tectonic stressing rate _�(x, y) is then fixed by the linear
relation _�(x, y) / r(x, y), which is derived from the balance
of seismic moment release [Catalli et al., 2008].
[33] CRS‐2 model builds on the work by Toda et al.

[1998, 2005]. Coulomb stress changes are determined on
3D optimally oriented fault planes, with the algorithm of
Wang et al. [2006] and assuming a coefficient of friction
mf = 0.3 [Hainzl et al., 2009]. The maximum Coulomb
stress change over the seismogenic depth sampled at 7 and
11 km is calculated assuming that seismicity will occur at
the location and depth where stress is most increased toward
failure [Toda et al., 2005]. The parameter product As =
0.04 MPa is set constant. The aftershock duration ta =
50 years is fixed because its value does not influence the
forecasts much [Toda et al., 2005]. The daily background
rate r(M ≥ 3) is assumed to be uniform in space and initially
set to 0.75 for the entire study area, based on the observed
seismicity rate in the year preceding the Landers main shock
in the forecasting region. The background rate is updated
during the forecasts using equation (11) of Dieterich [1994]
considering aftershocks that occurred before the forecast
period. Starting with the second‐day forecasts, r has only
small fluctuations around an average of 0.46. This estima-
tion is robust against variations in the chosen initial back-
ground rate.
[34] In model CRS‐3, coseismic stress changes are cal-

culated (as for CRS‐2) with the algorithm by Wang et al.
[2006], while the model CRS‐4 additionally computes
postseismic stress changes due to poroelasticity with the
software provided by Wang and Kümpel [2003]. The latter
model requires additional parameters whose values were
set to typical values at all depth levels: (1) the hydraulic

diffusivity D = 0.1m
2

s , (2) the Skempton ratio B = 0.6, and
(3) the dimensionless effective stress coefficient ~a = 0.8,
which measures the change in pore volume per unit change
in bulk volume under drained conditions. By assuming mf =
0.75, the effective coefficient of friction mf′ = (1 − B)mf = 0.3
is equal to the coefficient of friction also used by CRS‐3 and
CRS‐1 [Hainzl et al., 2009].
[35] Both the CRS‐3 and CRS‐4 models account for

uncertainties in the computed stress changes because
(1) small‐scale slip variability is generally not resolved in
the finite‐fault source models with a slip patch resolution of
3 km × 2.5 km; (2) lateral heterogeneities of the material
properties exist; (3) large uncertainties exist in the inversion
of finite‐fault source models. Stress fluctuations in each
grid cell are computed assuming a Gaussian distribution
according to Marsan [2006], where the standard deviation is
assumed to be proportional to the absolute value of the stress
change. In particular, the proportionality constant (or coef-
ficient of local stress variability) CV is for simplicity
assumed to be constant in space, which seems to be a good
first‐order approximation according to Hainzl et al. [2009].
In general, both models have four free parameters, but in this
study, the aftershock duration is fixed at ta = 10000 days ’
27.4 years, reducing the number of free parameters to three.
The aftershock duration does not affect the seismicity decay
in the beginning of the seismic activity [Cocco et al., 2010].
The three free parameters are estimated by maximum like-
lihood estimation based on first aftershock data: the param-
eter product As, the background rate r and the coefficient of
stress variability CV.

5. Definition of Statistical Tests

[36] We quantify the consistency of the observed earth-
quake sequence with the calculated forecasts using previ-
ously published statistical tests [Jackson, 1996; Schorlemmer
et al., 2007;Werner et al., 2009; Zechar et al., 2010]: (1) the
modified N(umber) test compares the total number of pre-
dicted and observed earthquakes, (2) the S(pace) test mea-
sures the consistency between the spatial distribution of
observed and predicted earthquakes, and (3) the likelihood
ratio test (R test) to compare the eleven models against the
simple STEP‐0 reference model. All of these tests are cur-
rently used to evaluate prospective short‐ and long‐term
earthquake forecasts within CSEP. To establish a ranking of
the models, we use the log likelihood scores of the models
(Table 6), likelihood gains and rejection ratios as will be
defined in sections 5.1–5.3.
[37] We apply statistics that are implemented in ongoing

prospective testing experiment of CSEP. All the tests use a
Poisson distribution to perform simulations and to establish
if a null hypothesis can be rejected at a particular signifi-
cance level, in general at an effective level of aeff = 0.025.
Lombardi and Marzocchi [2010] have shown that this
hypothesis does not hold for ETAS models applied to fore-
cast aftershocks sequences [see also Werner and Sornette,
2008]; in brief, the variability of a forecast is certainly
larger than the variability estimated through a Poisson dis-
tribution. This leads the CSEP tests to reject forecast of
ETAS models too frequently. Keeping this in mind, we
nevertheless decided to use these tests because we are not
yet in the position to quantify exactly this bias as a function
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of the expected seismic rate. Other possible biases may arise
from the fact that the occurrences and the rejections are not
spatially independent.
[38] Therefore, the results we obtain may be overly con-

servative and may imply that the models perform actually
better than we find. In other words, the models might
be rejected less frequently as they are in the current tests
when using the correct probability density function for
simulations.
[39] In an attempt to quantify the gain achieved by the

more complex models over the simple STEP‐0 model, we
calculate likelihood gains for each model compared to
STEP‐0 and use the likelihood ratio test (R test) to evaluate
whether the simple STEP‐0 model can be rejected in favor
of more complex models, and vice versa [Jackson, 1996;
Schorlemmer et al., 2007]. By Occam’s razor, a simple
model is preferable over more complex ones if both explain
the data equally well.

5.1. Modified N Test

[40] The modified N test evaluates the consistency
between the forecasted and observed total number of events.
Zechar et al. [2010] proposed the two metrics

�1 ¼ 1� F NObs � 1jNFð Þ ð5Þ

�2 ¼ F NObsjNFð Þ ð6Þ

where F(x∣me) is the right‐continuous Poisson cumulative
distribution function with expectation me evaluated at x. The
two metrics allow us to answer two questions separately:
(1) Assuming the forecast is correct, what is the probability
of observing at least NObs earthquakes (d1) and (2) assuming
the forecast is correct, what is the probability of observing at
most NObs earthquakes (d2)? If the observations fall into the
far tails of the distributions, then we reject the forecasts as
inconsistent with the observations at a chosen significance
level.
[41] We apply the N test to each 24 h forecast individually

(daily N tests); additionally we perform a cumulative N test
for which we cumulatively sum the forecasted number of
earthquakes since the main shock and apply the N test
consecutively over a growing testing period composed of
multiples of 24 h forecasts. For each of the two N tests, we
obtain 90 quantile scores and consequently a binary test
result, rejection or nonrejection according to the effective
rejection level aeff. To summarize the results, we calculate
the fractions RN(Daily) and RN(Cumulative) of the total
number of days (90) during which a model’s forecast is
rejected because either d1(t) < aeff or d2(t) < aeff.
[42] The cumulative number tests are strongly correlated

in time as models are penalized for poor performance on
single test days which is kept in the memory of the cumu-
lative test. In contrast, the daily N tests can generally be
assumed to be independent in time, although this is not
entirely correct because of the correlations due to ongoing
underlying physical processes (see above discussion).

5.2. Consistency Tests in Space

[43] The S test measures the consistency of the spatial
distribution of the daily forecasts with the spatial distribu-

tion of the observed earthquakes [Zechar et al., 2010]. To
isolate the spatial component of the forecasts, the forecasts
are first scaled to the total number of observed earthquakes;
then, for each individual spatial cell, we sum over the
expected rates in the magnitude bins to end up with a nor-
malized spatial forecast. To measure the consistency between
this spatial forecast and the observations, we compare the
log likelihood score of the observed locations given the
spatial forecast with the log likelihood values that would be
expected if the forecast were correct. To obtain the expected
likelihood scores, we simulated 10000 synthetic samples
consistent with the forecast model based on a Poisson dis-
tribution and compute their spatial likelihood values. We
then calculate the quantile z of the simulated spatial likeli-
hood scores less than the observed score. Low values of z
indicate that the forecasted spatial distribution is inconsis-
tent with the observations because the measured likelihood
value is much lower than expected if the forecast were
correct. A high value of z indicates that the observed score
is much higher than expected, which is not taken as grounds
for rejection because, to obtain the high score, the observed
events fell right at the peaks of the forecasted distribution.
The S test is therefore a one‐sided test, and we reject models
at the 95% confidence level whenever z < 0.05.

5.3. Probability Gain in the S Test

[44] We determine the probability gain per earthquake for
the S test, GLLS

, following Helmstetter et al. [2006] to rank
the models compared to the simple reference model. The
probability gain per earthquake for the S test is defined as

GLLS ¼ exp
LLS Hið Þ � LLS Hrð Þð

NObs

� �
ð7Þ

Hi refers to the models i = 1–11 with their joint log likelihood
score LLS(H

i), Hr denotes the reference model (STEP‐0)
and its joint log likelihood score LLS (H

r ), NObs the total
number of observed events. Values larger than 1 indicate a
probability gain per earthquake, values smaller than 1 a loss.

5.4. Testing Against Reference Model

[45] As final measure, we apply the R test to compare
each model with the reference model [Schorlemmer et al.,
2007]. In the R tests, the total number and the spatial dis-
tribution of the model forecasts are tested against the refer-
ence model. The R test is evaluated at the 0.05 significance
level and serves the information whether one forecast model
may be rejected at the significance level tested against a
reference model. This adds an additional piece of informa-
tion considering the spatial distribution and the amount of
forecasted rates: a test hypothesis cannot be rejected in case
the forecasted rates in the space‐time‐magnitude bins obtain
a better likelihood score compared to the ones of the null
hypothesis.
[46] In the R test, both models, Hr and Hi, are used as null

hypothesis to test against. For likelihood ratio tests of model
i versus the reference model r, LLir indicates that the ref-
erence model is the null hypothesis and model i is the test
hypothesis; vice versa for LLri. The log likelihood ratio is
defined as the difference

LLir ¼ LL WjLi
� �� LL WjLrð Þ ð8Þ
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where W denotes the vector of observed earthquakes, Li and
Lr are the forecasts of hypotheses i and r. LL(W∣Li) and
LL(W∣Lr) are the joint log likelihoods of the models. In
contrast to the log likelihoods of the S test (LLS) the log
likelihoods of the R test include the information of each
space‐rate‐magnitude bin; in the S test, rates were collapsed
to one magnitude bin and normalized. We compute the
quantile scores g based on 10000 simulations following the
method of Schorlemmer et al. [2007].
[47] As we are testing a time series of forecasts, we define

the rejection ratios for both ways of testing, R(LLir) and
R(LLri), respectively. The rejection ratios denote the fraction
of cases the test hypothesis is rejected at the significance
level in favor of the null hypothesis by comparing the
quantile score with the predefined significance level. Small

values of R(LLir) (R(LLri)) imply that the test hypothesis is
superior.

6. Results

[48] Prior to diving into the statistical analysis of the
forecasts, we describe some model features by comparing
snapshots of the model forecasts for day 4 (Figures 2 and 3).
By day 4, abundant seismicity is available to which the
models can adjust their parameter values. Figures 2 and 3
display the base 10 logarithm of the daily expected num-
ber of earthquakes ML ≥ 3 for each model along with the
actually observed earthquakes of magnitude ML ≥ 3.
[49] Models ETAS‐1 to ETAS‐3 indicate a similar

smooth distribution of seismicity rates with some spots of

Figure 2. Seismicity rate forecast maps for day 4 after the Landers main shock for six different ETAS
models. Shown is the logarithm of the expected number of earthquakes per day per 0.05 by 0.05°. Earth-
quakes withML ≥ 3 on day 4 are superimposed as gray dots. Surface projections of faults (black lines) and
the Wald and Heaton [1994] fault model (thick black lines) are shown.
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higher rates at the hypocentral areas of the Landers and
the Big Bear event and in the Barstow region (Figure 2);
model ETAS‐4 employs an even smoother distribution
while models ETAS‐5 and ETAS‐6 differentiate strongest
between areas of recent activity. The differences are subtle
but cause differences as will be discussed in section 6.2
where we discuss the spatial consistency test. The highest
forecasted rates appear at the same locations, however, they
are smoothed out differently. For example, ETAS‐1 and
ETAS‐3 assign higher rates (log10 N(M ≥ 3) ≥ 0.5) on the
spot of the Barstow cluster (red spot indicated with the
arrow in Figure 2) compared to the other ETAS models
(log10 N(M ≥ 3) ≤ −0.5).
[50] The stationary background model for ETAS‐6 and

STEP‐1 is the same in terms of the spatial distribution while

the seismicity rate of the background is smaller compared
to other models. The background is defined as m(x, y) =
m0p(x, y) where p(x, y) is a normalized distribution and m0

is estimated for ETAS‐6 and fixed (Table 3).
[51] Including the fault model information of byWald and

Heaton [1994], STEP‐1 exhibits its ability to adjust to the
aftershock sequence (Figure 3b) compared to the reference
model STEP‐0 (Figure 3a) that does not take advantage of
the available fault model information. Seismicity rates are
concentrated along the causative fault segments with the
rates being influenced by the spatially varying seismicity
parameter values. Similarly to the ETAS models (Figure 2),
the increased rates in comparison to the background model
are not only seen along the Landers fault, but also in the
region around the magnitude ML = 6.5 Big Bear aftershock

Figure 3. Seismicity rate forecast maps for day 4 after the Landers main shock for models STEP‐0,
STEP‐1, and the four CRS models. Shown is the logarithm of the expected number of earthquakes per
day per 0.05 by 0.05°. Earthquakes with ML ≥ 3 of day 4 are superimposed as gray dots. Surface projec-
tions of faults (black lines) and the Wald and Heaton [1994] fault model (thick black line) are shown.
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and less pronounced to the north in the Barstow region.
Punctual rate increases spread out through the entire forecast
box, however, less intense than in the ETAS models. Model
STEP‐0 concentrates the rates at the Landers and the Big
Bear hypocenters and the rates are radially smoothed away
from these two points. The rate variations outside the yellow
colored circle results from the background model.
[52] CRS‐1 and CRS‐2 show the strongest imprints of the

Coulomb stress change calculations in the form of the lobes
traditionally associated with the Coulomb theory (Figure 3);
note that the color scale ranges from −9.5 to 1 for these two
models. As CRS‐1 calculates the stress changes for after-
shock mechanisms identical to the average mechanism of
the Landers main shock rupture, the regions of increased
rates are much smaller than those of the other CRS models
which calculated the stress changes for optimally oriented
faults. The observed seismicity on day 4 does not match the
forecast of CRS‐1 well. CRS‐2, on the other hand, appears
to forecast the earthquakes relatively well. The model pre-
dicts a concentrated region of increased rates along the
causative faults. In CRS‐3 and CRS‐4, the traditional spatial
imprint of the Coulomb stress change shadows is no longer
existent as uncertainties in the stress change calculations for
the forecasts are included. The uncertainties in the stress
calculations have the effect of removing stress shadows
(regions of negative Coulomb stress changes), resulting
overall in an increased rate of seismicity [Hainzl et al.,
2009]. Contrary to the statistical models, CRS‐3 and
CRS‐4 concentrate high seismicity rates not at the hypo-
centers of the Landers and the Big Bear event but close to
the ends of the individual fault model segments.

6.1. Evaluating Forecasted Rates: N Test Results

[53] We start the quantitative model evaluation by com-
paring the daily number of predicted earthquakes NF with
the number of observed earthquakes NObs as a function of
time since the Landers main shock (Figure 4). The observed
daily rate varies strongly from day to day during the 90 day
testing period but can, on average, be modeled with an
Omori‐Utsu law decay. We test the forecasts against
observed earthquakes ML ≥ 4 on the first day because the
catalog is not complete down to ML ≥ 3, against which we
test the remainder of the days (see Figure 1).
[54] In absolute numbers, the forecasts of all models

deviate the most from the observed number of shocks in the
beginning of the sequence. The first several hours to days
after the main shock are the most critical of the sequence in
terms of hazard and productivity for which the least infor-
mation is available due to earthquake detectability issues
[Woessner and Wiemer, 2005]. Therefore, it is not surpris-
ing that the largest differences between NF and NObs exist
early on. Toward the end of the 90 day testing period, the
number of events fluctuates between 0 and 10 per day, and
the differences between NF and NObs decrease.
[55] Models ETAS‐1 and ETAS‐2 forecast the same total

number of events because they differ only in their spatial
distribution function (Figures 4a and 4b). Models ETAS‐3
and ETAS‐4, the stationary and nonstationary realizations,
respectively, by Lombardi et al. [2006], display the largest
day‐to‐day variability in the forecasts. These two models
seem to be most sensitive to the reestimations of the model
parameter values. A numerical reason for the larger vari-

ability in ETAS‐3 and ETAS‐4 might be the smaller amount
of 1000 Monte Carlo simulations compared to 10000 used
for ETAS‐1 and ETAS‐2 that can cause larger fluctuations
in the mean number. The large fluctuations refer to the
heavy tail distribution of ETAS forecasts [Lombardi and
Marzocchi, 2010]. Comparing STEP‐1 with its simplified
version STEP‐0 (Figures 4a and 4b, black and gray line), the
forecasts by STEP‐0 decay more smoothly because it con-
siders only events above ML ≥ 6 to contribute to earthquake
triggering, while STEP‐1 includes all magnitude ML ≥ 2.5
events.
[56] The N test evaluates the ability of a model to cor-

rectly forecast the number of observed earthquakes. The
daily tests result in large variations of the quantile scores d1
and d2 on each test day due to the fluctuations in observed
seismicity. Such fluctuations are expected and by defining a
significance level of 0.05 to reject a forecast, we would
expect a perfect model to be rejected in 5% of the cases; for
a 90 day test period one can expect a perfect model to be
rejected on four test days. The cumulative tests (Figure 5)
provides insight in the overall performance of a model with
a memory of the daily performance.
[57] The forecasts for day 1 may partly suffer from poor

parameter values that stem from previous seismicity;
parameter values could not yet be adapted to the Landers
sequence. The only additional information for day 1 is the
magnitude of the main shock. The number of forecasted
events M ≥ 4 on day 1 ranges between NF = 11.24 and 73.85
while NObs = 62 events were observed (see Table 5). A
model is not rejected at the 0.05 significance level by the N
test if the predicted number of events lies between 48 and
79. This range is met only by the two STEP models. The
latter two models are the only ones to overestimate the
number of events; all other models underestimate NObs.
Except for CRS‐1, all models can reduce the difference
between NF and NObs over time (Figure 4), mainly because
the models reestimate parameter values to adjust to the
Landers sequence.
[58] For all but two models (ETAS‐4 and CRS‐1), the

rejection ratios for the daily N tests RN are lower than RN =
0.16 (see Table 5), implying that in less than 16% of the test
days (12 days) the forecasted rate of seismicity is rejected.
This result is encouraging as one expects from a perfect
model with the same test to have about 5% or 4 forecasts in
this sequence to be rejected. The rejection ratios of ETAS‐4
and CRS‐1 are RN = 0.31 and 0.72, respectively; this means
these models perform by far worse than the other models in
this test.
[59] Furthermore, we observe a strong variability of

model scores from day to day. This means that one cannot
draw reliable conclusions from a good performance on one
day to an also good performance on the next day. One
reason for this variability reflected in the quantile scores d1,2
of the daily N tests, arises from the variability in the number
of observed events. All forecast models result in a much
smoother time series of NF compared to NObs (Figure 4).
The ETAS‐type models show the strongest fluctuations
followed by the modified STEP‐1 model.
[60] The cumulative tests provide the most robust insight

in the reliability of the models because all available data is
used and therefore the N tests gains power with time. In
Figure 5, we plot both quantile scores d1 and d2 to show in
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which of the one‐sided tests the models are rejected. The
quantile scores mainly show a complementary behavior
(d2 ≈ 1 − d1) because they become only very different in
cases of very low forecasted rates; this case does not occur in
this aftershock sequence but often in long‐term forecasts or
in daily forecasts for large regions [Woessner et al., 2010].
[61] The cumulative number tests reveal the following

characteristics of the statistical models (Figure 5): STEP‐1
(black) generates forecasts consistent with the total observed
number and is only rejected once on day 2. Toward the end
of the testing period (starting around day 35), the model
seems to overpredict slightly, and therefore d2(t) decreases
gradually and comes closer to rejection. ETAS‐1 and
ETAS‐2 are rejected during the first 15 days but model the
sequence better with time, although a tendency to overes-
timate is also visible. The other models (ETAS‐3, ETAS‐4,
ETAS‐5, ETAS‐6, and CRS‐1) poorly forecast the rates
during the first days of the sequence and are therefore
rejected from the beginning onward and never obtain
quantile scores that are larger than the rejection level; thus
we do not plot these results. The abundant failing of dif-
ferent flavors of ETAS models may be due to the bias
reported by Lombardi and Marzocchi [2010] and described
above. CRS‐2 underpredicts the cumulative seismicity in
the entire time period (Figure 4f) but cannot be rejected at
the chosen significance level anymore after 35 days. In
contrast, models CRS‐3 and CRS‐4 perform well in the
beginning and are not rejected during the first 22 days, but
thereafter overestimate the seismicity rate. Common to all
the CRS models is the fact that they overestimate the rate of
seismicity with advancing time: rate‐and‐state theory con-
strains the exponent of the Omori‐Utsu law, the p value to
be less smaller than 1[Dieterich, 1994; Cocco et al., 2010].
This might be the main reason why the CRS models cannot
adjust to a faster decay observed during the later stage of the
sequence. The effect is even more pronounced in model

CRS‐4, which includes poroelastic effects in the computa-
tions of the stress changes.
[62] In summary, we find that models CRS‐3 and CRS‐4

and models STEP‐1 match the cumulative number of
observed events well in the first 15 days while toward
the end of the testing period, models STEP‐1, ETAS‐1,
ETAS‐2, ETAS‐3, and CRS‐2 tend to fit best. The com-
parison also highlights that STEP‐0, ETAS‐5, ETAS‐6, and
CRS‐1 tend to underestimate the cumulative number of
events with time, whereas CRS‐3 and CRS‐4 and ETAS‐3
and ETAS‐4 tend to overestimate the seismicity rate.
[63] It is important to remember that the cumulative tests

keep a memory of the daily performance of the forecasts
which might be an undesirable feature: a strongly incon-
sistent forecast at any time can lead to a rejection (extreme
quantile scores) from which a model might not recover even
if subsequent forecasts are consistent with daily observa-
tions. This effect is, for example, observed for ETAS models
which strongly underestimated the seismicity rate in the first
days.

6.2. Testing Data Consistency in the Space

[64] We determine the daily and joint log likelihood score
of the S test LLS for each model to provide insight in its
capabilities to match the observed spatial distribution of
earthquakes for the entire testing period. The joint log
likelihood scores for the S test are used to rank the models
for their overall spatial performance (Table 6).
[65] Small negative numbers indicate a better fit to the

data than large negative numbers. Model ETAS‐5 matches
the spatial distribution of events best, showing the highest
log likelihood score (LLS = −2905.26), ETAS‐6 being not
much different with LLS = −2907.27. It is followed by all
other ETAS models. Models ETAS‐5 and ETAS‐6, ETAS‐1
and ETAS‐2, and ETAS‐4 form a group with a difference
of about 300 units. Models ETAS‐3, CRS‐3, STEP‐1 and
CRS‐4 form a group of models with similar LLS values with
a difference of 300 units, but are at least 400 units smaller
than the score of model ETAS‐4. Model CRS‐1 obtains a
log likelihood scores of negative infinity because the fore-
casted rates of the model are very small (Figure 4) and thus
the spatially distributed rates become so small that some

Table 5. Rejection Ratios for Daily and Cumulative Modified
N Test and Number of Forecasted Events for Day 1 with ML ≥ 4a

Model

RN NF

(ML ≥ 4, Day 1)Daily Cumulative

STEP‐0 0.17 0.92 72.46
STEP‐1 0.09 0.01 73.85
ETAS‐1 0.10 0.19 27.22
ETAS‐2 0.10 0.19 27.22
ETAS‐3 0.13 1.00 11.24
ETAS‐4 0.31 1.00 20.13
ETAS‐5 0.16 1.00 17.24
ETAS‐6 0.13 1.00 17.24
CRS‐1 0.72 1.00 12.18
CRS‐2 0.10 0.39 30.59
CRS‐3 0.08 0.73 43.93
CRS‐4 0.10 0.77 32.30

aThe rejections ratio expresses the percentage of days the daily forecasts
are rejected at the effective significance level aeff = 0.025 of the modified N
test [Zechar et al., 2010]. On day 1, 62 events with ML ≥ 4 were observed.

Figure 5. Quantile scores (top) d1(t) and (bottom) d2(t)
of cumulative N test as a function of time. Gray patch on
Figure 5 (bottom) indicates 0.05 significance level at which
a rate forecast are rejected. Models that are rejected during
entire period are not shown. Small d1(t) and d2(t) values
indicate underestimation and overestimation of the seismic-
ity level by a model forecast, respectively.
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obtain a negative infinity value. This is essentially a con-
sequence of predicting stress shadow for the specified
receiver faults. The sum of the log likelihood scores then
becomes very small. CRS‐2 obtains a score that is smaller
than the one of STEP‐0 that is not ranked.
[66] Based on the ranking of the joint log likelihood

score LLS, we selected models ETAS‐6, ETAS‐2, ETAS‐4,
CRS‐3, STEP‐1, andCRS‐2, representing the best performing
models with updating parameter values and also different
modeling approaches, ranked by the LLS. We show the joint
log likelihood score per spatial bin, i.e., the sum of the
likelihoods over the 90 days in each bin (Figure 6). This
highlights the locations where the forecasts match the
observed data relatively well. The differences are only really
of interest in areas (grid cells) where earthquakes actually
observed. Light gray to light blue colors (log likelihoods
very close to zero) indicate cells in which forecasts and

Figure 6. Map of log likelihood sum for each spatial bin (grid cell) at the end of the testing period.
Model names and joint log likelihood sum LLS (see Table 6) is given according to the LLS ranking:
(a) ETAS‐6, (b) ETAS‐2, (c) ETAS‐4, (d) CRS‐3, (e) STEP‐1, and (f) CRS‐2. Color scale is manually
saturated at LLS = −80 for comparison reasons; light gray regions indicate log likelihood scores very close
to zero.

Table 6. Joint Log Likelihood LLS and Probability Gain Per
Earthquake Gain(S) for All Modelsa

Model LLS Gain(S) Rank

STEP‐0 −5187.40 1.00
STEP‐1 −4099.87 3.02 8
ETAS‐1 −3160.40 7.86 4
ETAS‐2 −3012.83 9.14 3
ETAS‐3 −3708.66 4.50 6
ETAS‐4 −3308.43 6.76 5
ETAS‐5 −2905.26 10.19 1
ETAS‐6 −2907.27 10.17 2
CRS‐1 ‐inf 0.00 11
CRS‐2 −5351.49 0.85 10
CRS‐3 −3932.49 3.58 7
CRS‐4 −4298.86 2.47 9

aThe probability gain is computed against the reference model STEP‐0.
The rank denotes the comparative ranking based on the spatial predictive
power of the models.
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observed rates match, colors green to red denote large dif-
ferences; the entire grid is covered, but by using light colors
for almost zero numbers we highlight the regions that
influence the log likelihood score most. The gray regions
show in addition the regions to which most of the rates are
distributed by the smoothing kernels. All models show
worse fits in the Big Bear and the Barstow region, as well as
close to the Landers rupture. In particular, the worst log
likelihood scores are determined along the causative fault
system and at the ends of the finite‐fault model segments of
Wald and Heaton [1994]. The southern end of the rupture
zone in which the hypocenter is located results in a small log
likelihood scores. The LLS become generally better with
increasing distance from the causative fault. This feature is
expected for CRS models but less so for statistical models.
[67] The joint LLS in Figure 6 do not consider the tem-

poral evolution and also override the influence of specific
days. In a retrospective experiment on an aftershock
sequence, the starting date for the first forecast may strongly
influence the overall result. Figure 7 shows the log likeli-
hood scores LLS(Day 1) for the first day in the same order as
in Figure 6. All the models (including those not shown)
result in large negative LLS(Day 1) to the north of the
Landers fault, i.e., in the Barstow cluster region, with the
best values obtained by models ETAS‐1 and ETAS‐2. This
is likely because they are smoothed out more gradually than
the other models. Figure 7 gives a good impression of how
the smoothing kernels perform for the first forecast indicated
by the gray shading. The statistical models mainly distribute
the seismicity from the epicenter radially while CRS models
nicely include the fault structure. For ETAS‐5 and ETAS‐6
the radial components are superimposed by the anisotropic
kernel of the large magnitude event. Surprisingly, model
CRS‐3 obtains the best log likelihood score on day 1
implying that there is a likelihood gain on selected days
when using this model type; this points to the fact that only
evaluating the overall score is insufficient. Movies of the
daily snapshots of the S test for each model are available as
auxiliary material.
[68] The relative performance of the ETAS models in the

S test may be a direct consequence of the chosen spatial
probability distribution function. ETAS‐5 and ETAS‐6 use
a Gaussian kernel (equation (3), Table 3) while all other
models apply a power law kernel (equation (4), Table 3), but
differences are small. We do not observe a clear dependence
on the number of free parameters (Table 1), in particular we
cannot state that a more free parameters lead to a better fit;
the number of free parameters is difficult to define for the
various models because of their strategies to estimate para-
meters in space or in sequence for different model parts. We
observe that the pattern of the CRS‐3 leads to the best
forecast in space as there is no radial smoothing involved
and the rates are concentrated along the causative fault.
[69] The temporal evolution of the joint likelihood scores

LLS(t) during the 90 day testing period presents the range of
spatial log likelihood scores that the models achieve on dif-
ferent days (ETAS‐6, ETAS‐3, ETAS‐4, CRS‐3, STEP‐1,
and CRS‐2; Figure 8). Days on which the observed log
likelihood score falls within the 95% confidence interval of
the simulated values (gray error bars) are indicated by green
squares; red squares denote days on which the observed

score falls outside the confidence limits. All models show
an improvement from larger negative to smaller negative
values with time starting at quite different levels on day 1, a
range between −351 (CRS‐2) and −197.79 (CRS‐3). The
improvement in the log likelihood scores is mainly due to
the smaller number of events that is observed. A smaller
negative LLS(t) and a smaller range mean that the spatial
predictability of a model is higher compared to other mod-
els. On the first day, all models are rejected. Model ETAS‐4
adjusts fastest its LLS(t) values to fall within the confidence
interval on day 2. Models ETAS‐5 and ETAS‐6 need about
10 days to fall within the 95% confidence intervals. Model
CRS‐3 shows consistent daily forecasts starting at day 4
while model STEP‐1 needs about 25 days to match the
confidence interval for the first time, but still shows multiple
failures afterward. Model CRS‐2 remains generally rejected
until day 40.
[70] As the final comparison to the observed data, we

analyze the cumulative performance of the models to spa-
tially forecast earthquakes in the Landers sequence with the
one‐sided S test quantile score z(t) (Figure 9). The cumu-
lative quantile score z(t) measures whether a model is
rejected at the 0.05 significance level (gray bar). The sta-
tistical and the CRS models are separately compared in the
panels Figures 9a and 9b, respectively. As indicated by
plotting the log likelihood scores LLS(t), model ETAS‐4 is
rejected only on the first day at aeff = 0.025. In sequence,
models ETAS‐4, ETAS‐5, ETAS‐6, ETAS‐1, and ETAS‐2
as well as CRS‐3 are not rejected anymore after 5 days,
followed by ETAS‐3, STEP‐1, CRS‐2, and CRS‐1. This is
in agreement with the findings for the log likelihood scores
(Figure 8) that indicate no probability gain in using the CRS
models tested when looking at the cumulative scores to
improve spatial forecasting ability, however, on single days
such as day 1, better scores are observed.

6.3. Testing Against a Simple Reference Model

[71] We evaluate the performance of the eleven forecast
models against the reference model STEP‐0. In short, the
forecasts of STEP‐0 are not rejected by the cumulative
N test during the first 7 days, but the model never passes the
S test. Model STEP‐0 achieves a joint log likelihood score
of LLS = −5187.40 which is better than the scores of models
CRS‐1 and CRS‐2 (Table 6). The difference between
STEP‐1 and STEP‐0 isD LLS = 1086 units, a difference that
quantifies how the additional elements in STEP‐1 improve
the ability to forecast spatial heterogeneous seismicity.
[72] According to the log likelihood scores, we obtain the

largest probability gain for model ETAS‐5 and ETAS‐6
(10.19 and 10.17, Table 6). Models ETAS‐2, ETAS‐1, and
ETAS‐4 follow with GLLS ranging between 9.14 and 6.76;
models ETAS‐3, CRS‐3, STEP‐1, and CRS‐4 result in a
small probability gain with values around 3. Models CRS‐1
and CRS‐2 do perform worse than the reference model.
[73] The daily rejection ratios of the R tests R(Lir) in

Table 7 show that nine out of eleven models provide better
forecasts than STEP‐0 as values of R(Lir) < 0.3 indicate that
the test hypothesis is rejected in less than 30 percent of
the tests; exceptions are the models CRS‐1 and CRS‐2.
Including the cumulative rejection ratios R(Lir) we find that
only models ETAS‐3 to ETAS‐6 outperform the reference
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Figure 7. Map of log likelihoods for each spatial bin (grid cell) of test day 1. Model names and log like-
lihood sum LLS(Day 1) of day 1 are given. Models are ordered as in Figure 6: (a) ETAS‐6, (b) ETAS‐2,
(c) ETAS‐4, (d) CRS‐3, (e) STEP‐1, and(f) CRS‐2. Color scale is manually saturated at LLS = −22 for
comparison reasons; light gray regions indicate log likelihood scores very close to zero.
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model in the R test as the values are small for both. This is true
also when the reference model is used as null hypothesis,
R(Lri). For models STEP‐1, ETAS‐1, ETAS‐2, CRS‐3,
and CRS‐4, we find small rejection ratios for the daily tests
when the complex models are used as null hypothesis R(Lir),

however, this is not found for the cumulative tests. This
discrepancy is related to large negative log likelihood
scores of these models in the beginning of the testing series.
Models CRS‐1 and CRS‐2 are rejected as null hypothesis at
a high percentage of the daily tests (86% and 52% percent,

Figure 9. Quantile score z(t) for the cumulative S tests as a function of time for (a) CRS models and
(b) statistical models. The significance level aeff = 0.025 is indicated as a gray patch at the bottom. In
the time sequences, models ETAS‐5, ETAS‐6, ETAS‐1, and ETAS‐2, as well as CRS‐3 are not rejected
anymore after 5 days, followed by ETAS‐3, CRS‐4, STEP‐1, CRS‐2, and CRS‐1.

Figure 8. Log likelihood values of the S test as a function of days for model ETAS‐6, ETAS‐2, ETAS‐4,
CRS‐3, STEP‐1, and CRS‐2. Displayed are the mean and the 97.5 and 2.5 percentiles (gray dot and bars);
days on which a log likelihood value LLS(t) fall within the percentiles are indicated as green squares and
outside with red squares.
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respectively) and are always rejected in the cumulative test.
Model CRS‐1 can also not reject the reference model as null
hypothesis at high percentages.

7. Discussion

[74] The retrospective testing experiment shows that an
overall ranking of short‐term forecast models based on
likelihood tests as used in CSEP is challenging because the
single tests evaluate specific features. The N tests results
indicate that model STEP‐1 outperforms all other models
when forecasting the total number of events, followed by
CRS‐3 and CRS‐4 that perform well in the first 25 days;
contrary, models ETAS‐1 and ETAS‐2 approximate the
number of observed events closely starting on day 15
(Figure 5). Models ETAS‐3 to ETAS‐6 perform well in the
daily N tests, but are rejected throughout the period by the
cumulative N test because they cannot recover from a very
low forecast during the initial days.
[75] In contrast to the N test, models ETAS‐5 and ETAS‐6

clearly show the best performance when testing the spatial
consistency as found in the sum of the log likelihood scores
followed by ETAS‐1 and ETAS‐2 (Table 6 and Figures 6,
7, and 9) while model STEP‐1 has less predictive power in
forecasting the spatial distribution correctly. In neither of the
applied testing procedures can a CRS model outperform the
statistical models, and only model CRS‐3 and CRS‐4 can
compete with the statistical models. By including stress
uncertainties computed from uncertain finite‐fault source
models, the regions of negative Coulomb stress changes are
removed and also appear as regions of triggering seismicity
[Hainzl et al., 2009]. In other words, there are effectively no
stress shadow regions in this model; in fact, higher seis-
micity rates are forecasted in comparison to the background
(see Figure 3).
[76] The major challenge in matching the total number of

events is related to finding appropriate initial parameter
values for each model. The initial parameter values will
become better constrained with time as more and more data
of additional sequence becomes available. Thus, the chal-

lenge to perform better in the N tests is a question of the
amount of data available for calibrating the initial parameter
values that might vary with tectonic setting [Schorlemmer
and Wiemer, 2005].
[77] The present results do not provide conclusive evi-

dence for a best spatial kernel that the empirical models use
to forecast the spatial distribution of triggered seismicity.
The ETAS models in the experiment use either a power
law or a Gaussian kernel, however, there is no systematic
improvement of one kernel over the other. In addition, most
models include additional components to improve the spa-
tial forecast. For example, ETAS‐5 estimates the distribu-
tion of aftershocks by smoothing the locations of early
aftershocks and thereby obtains an anisotropic forecast. To
make progress on this issue, detailed testing of one model
using different kernels applied on multiple aftershock
sequences and on other scales will be necessary. In addition,
studies in which earthquakes are related to faults with
quantitative measures such as provided by Powers and
Jordan [2010] and Wesson et al. [2003] are necessary.
Simple smoothing with a r−x decay as applied in the generic
element of the STEP‐1 model prove to be too simplistic
without further modifications depending on the background
rate distribution as for example implemented in ETAS‐4
or in ETAS‐2. Spatially mapping seismicity parameters
improves forecasting capabilities (STEP‐1 compared to
STEP‐0) and thus further supports an alley that future
models may follow (Figure 3) [Gerstenberger et al., 2005]
in addition to leverage preexisting fault structures.
[78] Our results show that the traditional fixed‐receiver

approach of combining Coulomb stress change calculations
with rate‐and‐state theory (CRS‐1) cannot compete with
other CRS models despite the included effect of ML > 4.5
aftershocks. Instead, it seems essential to resolve stress
changes on 3D optimally oriented faults; however, the
experiment is not comprehensive enough to conclude onto
which fault planes Coulomb stress changes should be
resolved for seismicity rate forecasts. We have for example
not tested models that resolve stress changes onto the pre-
dominant geologic structures and then computed then esti-
mates seismicity rates on those [McCloskey et al., 2003;
Steacy et al., 2005a]; we assume that this could have a
strong influence on the test results.
[79] The results of model CRS‐3 and CRS‐4 suggest that,

to compete with empirical‐statistical models, elements of
strong stochasticity need to be included in the physics‐based
models. In particular, the large uncertainties in stress cal-
culations have to be taken into account. However, both
models CRS‐3 and CRS‐4 do this in a very simplified way
which effectively leads to a transformation of the stress
shadows into regions of increased seismicity. More sophis-
ticated considerations of the involved uncertainties need to
be done in future.
[80] Including poroelastic effects in calculating Coulomb

stress changes does not improve the forecasts according to
the results. From a physical point of view, this may be
surprising as the existence of fluid flow in the Landers
region has been suggested [Bosl and Nur, 2002]. One reason
could be the choice of hydraulic parameters for the crust,
yet, we are not able to fully investigate this with the mea-
sures we take in this study. In addition, there are multiple

Table 7. Rejection Ratios for Daily and Cumulative R Testsa

Hi

R(Lir) R(Lri)

Daily Cumulative Daily Cumulative

H1 STEP‐1 0.20 1.00 0.84 0.99
H2 ETAS‐1 0.12 0.92 0.90 1.00
H3 ETAS‐2 0.10 0.84 0.93 1.00
H4 ETAS‐3 0.03 0.02 0.87 1.00
H5 ETAS‐4 0.10 1.00 0.99 1.00
H6 ETAS‐5 0.03 0.01 0.92 1.00
H7 ETAS‐6 0.04 0.01 0.92 1.00
H8 CRS‐1 0.86 1.00 0.17 0.06
H9 CRS‐2 0.56 1.00 0.76 1.00
H10 CRS‐3 0.20 0.99 0.80 1.00
H11 CRS‐4 0.29 0.99 0.78 1.00

aThe rejection ratio measure the percentage the null hypothesis can be
rejected by the test hypothesis. In column R(Lir), the hypothesis Hi forms
the null hypothesis: small values of R(Lir) denote that hypothesis Hi

performs better Hr. Vice versa this is shown in column R(Lri) for which
the reference model STEP‐0 is always the null hypothesis.
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models that describe the effect of earthquake triggering
associated with fluid flow that could also be appropriate
[e.g., Miller, 2002; Miller et al., 2004].
[81] The results of the R tests with which eleven models

are compared to a reference model (STEP‐0) reveal the
superiority of nine models as the rejection ratios are small
(Table 7) in the daily tests; exceptions are the models CRS‐1
and CRS‐2. In the cumulative tests some of the models are
likely to suffer from the discrepancy in forecasting the total
number of seismicity in the beginning of the sequence. The
probability gains for the S test support this result as the
spatial forecasting ability of all statistical models clearly
outscore the reference model (Table 6).
[82] As pointed out earlier, the simulations to obtain

confidence levels for rejecting a hypothesis use the Poisson
distribution which may lead to reject a model forecast in
more cases than is actually true [Lombardi and Marzocchi,
2010]. A solution to this problem would be to simulate, or
otherwise provide, the full probability density distribution of
seismicity rates in each space‐time‐magnitude bin by each
model.Werner and Sornette [2008] proposed two pathways:
The first involves propagating model and parameter value
uncertainties into forecasts by simulations [Rhoades et al.,
1994] while the second solution involves the idea of
sequential data assimilation. Forecasts evolve through time
the model forecast (prior) taking into account uncertainties
in parameters and past data, and correcting the forecast
using uncertain data (the likelihood) through Bayes’ theo-
rem. Future experiments should consider allowing models to
provide the full distributions in each bin. For this experi-
ment, we were not yet in the state to perform this task.
[83] We summarize the model performance by rejection

ratios implicitly assuming that the tests are independent. For
the daily tests, the assumption that a day‐to‐day forecast is
independent for testing is technically fine; physically inde-
pendence might not be justified considering that earthquakes
are triggered by induced stress changes whatever mecha-
nism is responsible. For the rejection ratios of the cumula-
tive N test, we cannot assume temporal independence. The
results may thus only give a crude rule‐of‐thumb‐type
information.
[84] In the models provided to the experiment, we did not

use some information that might improve forecasts. For
example, none of the models available to us include post-
seismic relaxation or afterslip in the computation of Cou-
lomb stress changes [e.g., Perfettini and Avouac, 2007].
Furthermore, none of the stress‐triggering models account
for stress changes due to small earthquakes, nor do any of
the models include dynamic triggering [Helmstetter et al.,
2005; Felzer et al., 2003; Felzer and Brodsky, 2006].
Including such models is a desirable extension of the
experiments such as we performed and will provide the
community with a better insight in the predictive skills of all
models.
[85] The 24 h testing class is most suited for models that

are using the updated information of seismicity catalogs. For
example, STEP‐1 takes advantage of updated seismicity to
reestimate the spatial distribution of the seismicity para-
meters in the Gutenberg‐Richter relationship and the Omori
law. Similarly, ETAS models update parameters and fore-
casted event rates with incoming event information (except
for ETAS‐5). In contrast, models that are based on Coulomb

stress change computations do not benefit as much from
updating information as either only the main shock and the
largest aftershock (Big Bear, ML = 6.5) are used as stress
steps (CRS‐2 to CRS‐4) or only aftershocks above magni-
tude ML = 4.5 (CRS‐1). None of the models include data
down to small magnitudes which might improve forecasts of
the physics‐based models [Marsan, 2005; Helmstetter et al.,
2006].

8. Conclusion

[86] The main goal of this paper is to outline a strategy for
a rigorous evaluation of short‐term forecast models within a
retrospective testing experiment. Despite the golden rule
that forecast model evaluation and validation can only be
done in truly prospective experiments as carried out in the
CSEP framework, operational earthquake forecasts around
the world may strongly benefit from a retrospective evalu-
ation before standard CSEP experiments are started or in
progress. Specifically, in this first community‐based retro-
spective testing experiment we compared the ability of
different statistical seismicity models and physics‐based
models to forecast the seismicity of a complex earthquake
sequence. We designed the experiment providing the
modelers the entire data set required (available as auxiliary
material). We provided more information as would have
been available in real time during the Landers earthquake
sequence. Thus, we defined an experiment under ideal
controlled conditions. We challenge the models by defining
a distinct testing class to scrutinize their performance
and test in particular the consistency with the observed
data in terms of total forecasted number and their spatial
distribution.
[87] The total number of observed earthquakes is satis-

factorily forecasted only by models STEP‐1 and ETAS‐1
and ETAS‐2 for the entire testing period. Models CRS‐3
and CRS‐4 perform well in the first 25 days and then start
overpredicting. One reason is that the p value is limited to
p ≤ 1 in rate‐and‐state theory. The results suggest to further
investigate the time, space and magnitude dependence of all
parameters to improve forecasting abilities considering
magnitude dependence of the p value as has been suggested
[e.g., Ouillon and Sornette, 2005; Hainzl and Marsan,
2008].
[88] Epidemic Type Aftershock Sequence Models (ETAS)

perform best in terms of forecasting the spatial distribution
of data. Model ETAS‐5 outperforms all other models in the
overall S test log likelihood although parameters are esti-
mated form data before the sequence. Model ETAS‐6 per-
forms slightly less well, however, the log likelihood differ
only minor. Fluctuations in the parameter estimating proce-
dure contribute to this effect. Models ETAS‐1 and ETAS‐2
can be considered to perform best overall when looking at
the S test, the N test, and the rejection ratios.
[89] All models have particularly problems forecasting

seismicity in regions where no events occurred during the
learning period or close to the causative fault structure
(Figure 6). Research on the distribution of seismicity and its
relation to faults, either empirical or based on modeling
procedures, are necessary to improve the predictability of the
current models [Wesson et al., 2003; Powers and Jordan,
2010].
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[90] The results of the STEP‐1 and ETAS models show
that there is need to better define initial parameter values as
models are penalized for strong deviations over long testing
periods. This need may only be urgent when using these
models for short‐term forecasting such as in the current
experiment and may be of less interest when using the same
models for longer period forecasts. Cumulative log likeli-
hood test results can strongly depend on testing results from
single testing periods that lead to exceptionally small log
likelihood scores. Some models suffer from forecasts of the
first few days, for example, ETAS models that are based
on parameter values poorly constrained by precursory
seismicity.
[91] The model CRS‐1 resolves stress changes on speci-

fied receiver faults creating large stress shadows. In terms of
applying this approach to a sequence that generates seis-
micity on a variety of fault orientations, we showed that the
estimated rates are by far too low and that computing the
stress changes on 3D optimally oriented planes performs
better. However, the approach did not consider any
uncertainties in the receiver fault orientation nor any relation
to predominant geologic structures; this should be tested in
future experiments as such assumptions might improve the
predictive power of CRS models [McCloskey et al., 2003].
Furthermore, estimating parameter values from the first
aftershocks instead from precursory seismicity provides
better results. More details on the issue of optimally oriented
planes versus fixed receiver faults and the sensitivity of CRS
models are presented in Cocco et al. [2010].
[92] CRS models adding stress heterogeneities as a mea-

sure of uncertainty in the DCFS computations lead to
improved rate forecasts compared to models disregarding
these uncertainties. We conclude that it is necessary to
include uncertainties when using CRS models for forecast-
ing; however, this added stochasticity may not lead to a
better understanding of the physical mechanism. In addition,
further research is needed to properly propagate uncertainties
through the models [Hainzl et al., 2009].
[93] We investigated the performance of a suite of forecast

models for one aftershock sequence which was partly used
in the developments of the models themselves; thus, the
ranking of the models is specific to the Landers sequence
and not universal. To be able to draw conclusions about a
models’ performance for future sequences it is necessary to
run this type of experiments onmultiple aftershock sequences
in a controlled environment and with various levels of data
quality. We are working toward a collaboratory to retro-
spectively experiment with forecast models targeting prom-
inent aftershock sequences in a similar manner but also other
types of highly clustered seismicity such as swarms and
human induced seismicity. The aim is to improve forecast
models for highly clustered seismicity and to improve our
insight in the predictive of the models. This can form the
basis for the development of more general models that will
ideally perform well in prospective forecast testing.
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